• Title/Summary/Keyword: geomagnetic data

Search Result 170, Processing Time 0.025 seconds

INSTALLATION OF THE GEOMAGNETIC FIELD MEASUREMENT NETWORK AND INITIAL MEASUREMENT RESULT (한반도 지자기 연속 관측망 구축 및 초기관측 결과)

  • 최정림;조경석;박재수;이근호;이성환;성숙경;이동훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.126-135
    • /
    • 1997
  • We installed a pair of geomagnetic ground station in Ichon branch of Radio Research Laboratory(Ichon station, N37.1447, E127.5509) and Kyunghee University(Yongin station, N37.1419, E127.0454). We have successfully finished test operation, and we are now setting up a data base for the real time monitoring of the geomagnetic field. We are also going to have another geomagnetic station for the southward direction at Chejuisland(Cheju University) in summer of 1997. By that time, we will have a complete set of geomagnetic data base for the near earth solar-terrestrial environment in real time. In this paper, we compare and analyze the results of geomagnetic field observations from our stations, Kakioka observatory, Wind and Geotail satellites when the coronal mass ejections(CME) occurred on Dec. 2, 1996.

  • PDF

Statistical study of solar wind dynamic pressure enhancements during geomagnetic storms: Preliminary results

  • Baek, Ji-Hye;Lee, Dae-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.93-93
    • /
    • 2004
  • We have examined the solar wind dynamic pressure enhancements during geomagnetic storm main phase. The Dst index has been used to identify more than 100 geomagnetic storms which occurred in the time interval of 1997 to 2001. We have selected only the events having the minimum Dst value less than -50 nT. In order to identify the pressure impact, we have looked at the low latitude ground H data as well as the solar wind pressure data themselves. (omitted)

  • PDF

Dependence of Quiet Time Geomagnetic Activity Seasonal Variation on the Solar Magnetic Polarity

  • Oh, Suyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • The geomagnetic activity shows the semiannual variation stronger in vernal and autumnal equinoxes than in summer and winter solstices. The semiannual variation has been explained by three main hypotheses such as Axial hypothesis, Equinoctial hypothesis, and Russell-McPherron Effect. Many studies using the various geomagnetic indices have done to support three main hypotheses. In recent, Oh & Yi (2011) examined the solar magnetic polarity dependency of the geomagnetic storm occurrence defined by Dst index. They reported that there is no dependency of the semiannual variation on the sign of the solar polar fields. This study examines the solar magnetic polarity dependency of quiet time geomagnetic activity. Using Dxt index (Karinen & Mursula 2005) and Dcx index (Mursula & Karinen 2005) which are recently suggested, in addition to Dst index, we analyze the data of three-year at each solar minimum for eight solar cycles since 1932. As a result, the geomagnetic activity is stronger in the period that the solar magnetic polarity is anti-parallel with the Earth's magnetic polarity. There exists the difference between vernal and autumnal equinoxes regarding the solar magnetic polarity dependency. However, the difference is not statistically significant. Thus, we conclude that there is no solar magnetic polarity dependency of the semiannual variation for quiet time geomagnetic activity.

Diurnal and Seasonal Variations in Mid-Latitude Geomagnetic Field During International Quiet Days: BOH Magnetometer

  • Hwang, Junga;Kim, Hyang-Pyo;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.329-336
    • /
    • 2012
  • Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Bohyunsan Observatory to measure the Earth's magnetic field variations in South Korea. In 2007, we installed a fluxgate magnetometer (RFP-523C) to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we use the H, D, Z components of fluxgate magnetometer data to investigate the characteristics of mid-latitude geomagnetic field variation. To remove the temporary changes in Earth's geomagnetic filed by space weather, we use the international quiet days' data only. In other words, we performed a superposed epoch analysis using five days per each month during 2008-2011. We find that daily variations of H, D, and Z shows similar tendency compared to previous results using all days. That is, H, D, Z all three components' quiet intervals terminate near the sunrise and shows maximum 2-3 hours after the culmination and the quiet interval start from near the sunset. Seasonal variations show similar dependences to the Sun. As it becomes hot season, the geomagnetic field variation's amplitude becomes large and the quiet interval becomes shortened. It is well-known that these variations are effects of Sq current system in the Earth's atmosphere. We confirm that the typical mid-latitude geomagnetic field variations due to the Sq current system by excluding all possible association with the space weather.

Effects of geomagnetic storms on the middle atmosphere and troposphere by ground-based GPS observations

  • Jin, Shuang-Gen;Park, Jong-Uk;Park, Pil-Ho;Cho, Jung-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.47-51
    • /
    • 2006
  • Among Solar activities' events, the geomagnetic storms are believed to cause the largest atmospheric effects. The geomagnetic storm is a complex process of solar wind/magnetospheric origin. It is well known to affect severely on the ionosphere. However, this effect of this complex process will maybe act at various altitudes in the atmosphere, even including the lower layer and the neutral middle atmosphere, particularly the stratosphere. Nowadays, the GPS-derived ZTD (zenith tropospheric delay) can be transformed into the precipitable water vapor (PWV) through a function relation, and further has been widely used in meteorology, especially in improving the precision of Numerical Weather Prediction (NWP) models. However, such geomagnetic effects on the atmosphere are ignored in GPS meteorology applications. In this paper, we will investigate the geomagnetic storms' effects on the middle atmosphere and troposphere (0-100km) by GPS observations and other data. It has found that geomagnetic storms' effect on the atmosphere also appears in the troposphere, but the mechanism to interpret correlations in the troposphere need be further studied.

  • PDF

Polarization Analysis of Ultra Low Frequency (ULF) Geomagnetic Data for Monitoring Earthquake-precusory Phenomenon in Korea (지진 전조현상 모니터링을 위한 ULF 대역 지자기장의 분극 분석)

  • Yang, Jun-Mo;Lee, Heui-Soon;Lee, Young-Gyun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.249-255
    • /
    • 2010
  • Since the 1990's, a number of ULF geomagnetic disturbance associated with earthquake occurrences have actively been reported, and polarization analysis of geomagnetic fields becomes one of potential candidates to be capable of predicting short-term earthquake. This study develops the modified polarization analysis method based on the previous studies, and analyzes three-component geomagnetic fields obtained at Cheongyang geomagnetic observatory using the developed method. A daily polarization value (the ratio of spectral power of horizontal and vertical geomagnetic field) is calculated with a focus on the 0.01 Hz band, which is known to be the most sensitive to seismogenic ULF radiation. We analyze a total of 10 months of geomagnetic data obtained at Cheongyang observatory, and compare the polarization values with the Kp index and the earthquake occurred in the analysis period. The results show that there is little correlation between the temporal variations of polarization values and Kp index, but remarkable increases in polarization values are identified which are associated with two earthquakes. Comparison the polarization values obtained at Cheongyang and Kanoya observatory indicates that the increases of polarization values at Cheongyang might be due to not global geomagnetic induction but the locally occurred earthquakes. Furthermore, these features are clearly shown in normalized polarization values, which take account in the statistical characteristics of each geomagnetic field. On the basis of these results, polarization analysis can be used as promising tool for monitoring the earthquake-precursory phenomenon.

Geomagnetic Sensor Compensation and Sensor Fusion for Quadrotor Heading Direction Control (쿼드로터 헤딩 방향 제어를 위한 지자기 센서 보상 및 센서 융합)

  • Lee, You Jin;Ryoo, Jung Rae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.95-102
    • /
    • 2016
  • Geomagnetic sensors are widely utilized for sensing heading direction of quadrotors. However, measurement from a geomagnetic sensor is easily corrupted by environmental magnetic field interference and roll/pitch directional motion. In this paper, a measurement method of a quadrotor heading direction is proposed for application to yaw attitude control. In order to eliminate roll/pitch directional motion effect, the geomagnetic sensor data is compensated using the roll/pitch angles measured for stabilization control. In addition, yaw-directional angular velocity data from a gyroscope sensor is fused with the geomagnetic sensor data using a complementary filter which is a simple and intuitive sensor fusion method. The proposed method is applied to experiments, and the results are presented to prove validity and effectiveness of the proposed method.

Mid-latitude Geomagnetic Field Analysis Using BOH Magnetometer: Preliminary Results

  • Hwang, Jun-Ga;Choi, Kyu-Cheol;Lee, Jae-Jin;Park, Young-Deuk;Ha, Dong-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.173-181
    • /
    • 2011
  • Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Mt. Bohyun Observatory to measure the Earth's magnetic field variations in South Korea. We, in 2007, installed a fluxgate magnetometer (RFP-523C) to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we provide the preliminary and the first statistical analysis using the BOH magnetometer installed at Mt. Bohyun Observatory. By superposed analysis, we find that daily variations of H, D, and Z shows similar tendency, that is, about 30 minutes before the meridian (11:28) a minimum appears and the time after about 3 hours and 30 minutes (15:28) a maximum appears. Also, a quiet interval start time (19:06) is near the sunset time, and a quiet interval end time (06:40) is near the sunrise time. From the sunset to the sunrise, the value of H has a nearly constant interval, that is, the sun affects the changes in H values. Seasonal variations show similar dependences to the sun. Local time variations show that noon region has the biggest variations and midnight region has the smallest variations. We compare the correlations between geomagnetic variations and activity indices as we expect the geomagnetic variation would contain the effects of geomagnetic activity variations. As a result, the correlation coefficient between H and Dst is the highest (r = 0.947), and other AL, AE, AU index and showed a high correlation. Therefore, the effects of geomagnetic storms and geomagnetic substorms might contribute to the geomagnetic changes significantly.

A Study on The Geomagnetic Survey in Korea (우리나라 지자기측량에 관한 연구)

  • 최재화;조규전;김세걸;최윤수;윤홍식
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 1991
  • This paper is to aim to review the basic theory of geomagnetic survey and analize the field observation data (1980-1989) measured by Korea G S I. The magnetic Chart of Korea is mapped with use of the analized results and the principal scheme about Korea geomagnetic survey is furthermore proposed

  • PDF

Geomagnetic Field Monitoring at King Sejong Station, Antarctica (남극 세종기지에서의 지자기 모니터링)

  • Kim, DonIl;Jin, YoungKeun;Nam, SangHeon;Lee, JooHan
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.1
    • /
    • pp.11-21
    • /
    • 2004
  • The variation of geomagnetic field and absolute magnetic field at the geomagnetic observatory of King Sejong Station has been measured with 3-component ring core fluxgate magnetometer, proton magnetometer and D-I magnetometer. With data obtained from King Sejong Station during 2003, thediurnal and annual variations of geomagnetic field were researched and compared with those at other observatories. The deviation of daily variation of magnetic field in antarctica decreased gradually during winter season due to sun effect. The rates of componental annual variation of magnetic field at King Sejong Station were calculated using the least-square method under the assumption that the annual variation of magnetic field is linear. The rates are -55.93 nT/year in horizontal intensity, -0.87 min./year in declination, 58.30 nT/year in vertical intensity, and -69.85 nT/year in total intensity of magnetic field. A remarkable variation was caused by the magnetic storms occurred on 29~30 October, which were so powerful that the variation was observed in mid latitudes as well as high latitudes. The values of variation are generally 1500 2000 nT in Antarctica including King Sejong Station, 350 500 nT in East Asia. The measurement of absolute magnetic field shows that ring core fluxgate magnetometer has relatively large error range under cold temperature.

  • PDF