• Title/Summary/Keyword: geomagnetic

Search Result 386, Processing Time 0.021 seconds

DRAG EFFECT OF KOMPSAT-1 DURING STRONG SOLAR AND GEOMAGNETIC ACTIVITY (강한 태양 및 지자기 활동 기간 중에 아리랑 위성 1호(KOMPSAT-1)의 궤도 변화)

  • Park, J.;Moon, Y.J.;Kim, K.H.;Cho, K.S.;Kim, H.D.;Kim, Y.H.;Park, Y.D.;Yi, Y.
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.2
    • /
    • pp.125-134
    • /
    • 2007
  • In this paper, we analyze the orbital variation of the Korea Multi-Purpose SATellite-1(KOMPSAT-1) in a strong space environment due to satellite drag by solar and geomagnetic activities. The satellite drag usually occurs slowly, but becomes serious satellite drag when the space environment suddenly changes via strong solar activity like a big flare eruption or coronal mass ejections(CMEs). Especially, KOMPSAT-1 as a low earth orbit satellite has a distinct increase of the drag acceleration by the variations of atmospheric friction. We consider factors of solar activity to have serious effects on the satellite drag from two points of view. One is an effect of high energy radiation when the flare occurs in the Sun. This radiation heats and expands the upper atmosphere of the Earth as the number of neutral particles is suddenly increased. The other is an effect of Joule and precipitating particle heating caused by current of plasma and precipitation of particles during geomagnetic storms by CMEs. It also affects the density of neutral particles by heating the upper atmo-sphere. We investigate the satellite drag acceleration associated with the two factors for five events selected based on solar and geomagnetic data from 2001 to 2002. The major results can be summarized as follows. First, the drag acceleration started to increase with solar EUV radiation with the best cross-correlation (r = 0.92) for 1 day delayed F10.7. Second, the drag acceleration and Dst index have similar patterns when the geomagnetic storm is dominant and the drag acceleration abruptly increases during the strong geomagnetic storm. Third, the background variation of the drag accelerations is governed by the solar radiation, while their short term (less than a day) variations is governed by geomagnetic storms.

SPACE WEATHER RESEARCH BASED ON GROUND GEOMAGNETIC DISTURBANCE DATA (지상지자기변화기록을 이용한 우주천기연구)

  • AHN BYUNG-HO
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.1-13
    • /
    • 2000
  • Through the coupling between the near-earth space environment and the polar ionosphere via geomagnetic field lines, the variations occurred in the magnetosphere are transferred to the polar region. According to recent studies, however, the polar ionosphere reacts not only passively to such variations, but also plays active roles in modifying the near-earth space environment. So the study of the polar ionosphere in terms of geomagnetic disturbance becomes one of the major elements in space weather research. Although it is an indirect method, ground magnetic disturbance data can be used in estimating the ionospheric current distribution. By employing a realistic ionospheric conductivity model, it is further possible to obtain the distributions of electric potential, field-aligned current, Joule heating rate and energy injection rate associated with precipitating auroral particles and their energy spectra in a global scale with a high time resolution. Considering that the ground magnetic disturbances are recorded simultaneously over the entire polar region wherever magnetic station is located, we are able to separate temporal disturbances from spatial ones. On the other hand, satellite measurements are indispensible in the space weather research, since they provide us with in situ measurements. Unfortunately it is not easy to separate temporal variations from spatial ones specifically measured by a single satellite. To demonstrate the usefulness of ground magnetic disturbance data in space weather research, various ionospheric quantities are calculated through the KRM method, one of the magneto gram inversion methods. In particular, we attempt to show how these quantities depend on the ionospheric conductivity model employed.

  • PDF

How to forecast solar flares, solar proton events, and geomagnetic storms

  • Moon, Yong Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.33-33
    • /
    • 2013
  • We are developing empirical space weather (solar flare, solar proton event, and geomagnetic storm) forecast models based on solar data. In this talk we will review our main results and recent progress. First, we have examined solar flare (R) occurrence probability depending on sunspot McIntosh classification, its area, and its area change. We find that sunspot area and its increase (a proxy of flux emergence) greatly enhance solar flare occurrence rates for several sunspot classes. Second, a solar proton event (S) forecast model depending on flare parameters (flare strength, duration, and longitude) as well as CME parameters (speed and angular width) has been developed. We find that solar proton event probability strongly depends on these parameters and CME speed is well correlated with solar proton flux for disk events. Third, we have developed an empirical storm (G) forecast model to predict probability and strength of a storm using halo CME - Dst storm data. For this we use storm probability maps depending on CME parameters such as speed, location, and earthward direction. We are also looking for geoeffective CME parameters such as cone model parameters and magnetic field orientation. We find that all superstorms (less than -200 nT) occurred in the western hemisphere with southward field orientations. We have a plan to set up a storm forecast method with a three-stage approach, which will make a prediction within four hours after the solar coronagraph data become available. We expect that this study will enable us to forecast the onset and strength of a geomagnetic storm a few days in advance using only CME parameters and the WSA-ENLIL model. Finally, we discuss several ongoing works for space weather applications.

  • PDF

RELATIONSHIP BETWEEN GEOMAGNETIC STORMS AND RELATIVISTIC ELECTRON EVENTS

  • Kim, Hee-Jeong;Lee, Dae-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.2
    • /
    • pp.95-100
    • /
    • 2003
  • This paper is for the investigation of the relationship between the geomagnetic disturbances and the relativistic electron events occurring at geosynchronous orbit. We have analyzed the electron fluxes of E > 2 MeV measured by GOES 10 satellite and the hourly Dst index for the period of April, 1999 to December, 2002. With the rigorous definition of the relativistic event, total 34 events were identified during the time period. Our statistical study showed that more than 50% of the total events occurred associated with weak (or sometimes virtually no) magnetic storms. And only ~ 20% of the events took place accompanied by a strong magnetic storm of $Dst_{min}$ < -100 nT. This result suggests that large geomagnetic storms may not be crucial for the occurrence of a relativistic event at geosynchronous orbit. We also found that there is no clear correlation between the maximum electron flux of an event and the associated minimum of Dst. Therefore any study on the physical mechanism (s) accounting for the relativistic events should take it into account that strong magnetic storms may not be necessarily required for the occurrence of a relativistic electron event at geosynchronous orbit.

Analysis on the Impact of Space Environment on LEO Satellite Orbit (우주환경 변화에 따른 저궤도 위성의 궤도변화 분석)

  • Jung, Okchul;Yim, Hyeonjeong;Kim, Hwayeong;Ahn, Sangil
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.57-62
    • /
    • 2015
  • The satellite orbit is continuously changing due to space environment. Especially for low earth orbit, atmospheric drag plays an important role in the orbit altitude decay. Recently, solar activities are expected to be high, and relevant events are occurring frequently. In this paper, analysis on the impact of geomagnetic storm on LEO satellite orbit is presented. For this, real flight data of KOMPSAT-2, KOMPSAT-3, and KOMPSAT-5 are analyzed by using the daily decay rate of mean altitude is calculated from the orbit determination. In addition, the relationship between the solar flux and geomagnetic index, which are the metrics for solar activities, is statistically analyzed with respect to the altitude decay. The accuracy of orbit prediction with both the fixed drag coefficient and estimated one is examined with the precise orbit data as a reference. The main results shows that the improved accuracy can be achieved in case of using estimated drag coefficient.

The statistical analysis of low-latitude Pi2 pulsations during the intervals of extremely quiet geomagnetic conditions

  • Jun, Chae-Woo;Kim, Khan-Huk;Lee, Dong-Hun;Lee, Ensang;Jin, Ho;Park, Young-Deuk;Hwang, Junga
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.121.2-121.2
    • /
    • 2012
  • Several case studies reported that low-latitude Pi2 pulsations can occur under extremely quiet geomagnetic condition (Kp = 0) and that those are not associated with substorms. Until now, no statistical study has investigated Pi2 activity at low latitude during non-substorm intervals. In this study, we statistically examine the properties of Pi2 pulsations (i.e., Pi2 pulsation's power, frequency, and duration) observed at low-latitude Bohyun (BOH, L = 1.35) station in Korea. 161 Pi2s are identified during the intervals of extremely quiet geomagnetic conditions (Kp = 0-1) on November 2008. It is found that their frequencies increase as the solar wind speed increases. It is also found that the Pi2 pulsations frequently occurred periodically every ~30 min. Using solar wind data, we discuss what determines the 30-min recurrence time of Pi2 pulsations

  • PDF

Morning-afternoon asymmetry of geosynchronous magnetic field variations during geomagnetic sudden commencements

  • Park, Jong-Sun;Kim, Khan-Hyuk;Sung, Suk-Kyung;Lee, Dong-Hun
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.40.2-40.2
    • /
    • 2010
  • It has been reported that geosynchronous magnetopause crossings are more frequently observed in the prenoon sector than in the postnoon sector, indicating a dawn-dusk magnetopause asymmetry during extreme solar wind conditions. Motivated by these observations, we investigate geosynchronous magnetic field variations normalized to SYM-H when sudden commencements (SC) are observed on the ground. From a statistical analysis of the geosynchronous magnetic field responses to SC events from 1997 to 2006, we found that the normalized SC amplitude at geosynchronous orbit is larger in the morning sector than in the afternoon sector. In order to examine if this morning-afternoon asymmetry at geosynchronous orbit occurs only during disturbed geomagnetic conditions, we compared the geosynchronous magnetic field strength obtained in the morning and afternoon during undisturbed intervals (Kp < 3). We found that the asymmetry appears under undisturbed geomagnetic conditions and it is not due to solar wind aberration. This indicates that the morning-afternoon asymmetry was not strongly affected by changes in solar wind condition. Using solar wind data, we discuss what causes the morning-afternoon asymmetry at geosynchronous orbit.

  • PDF

Interpretation on GDS(Geomagnetic Depth Sounding) Data in and around the Korean Peninsula through the 3-D Sea Effect Modeling

  • Yang, Jun-mo;Kwon, Byung-Doo
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.159-169
    • /
    • 2006
  • A GDS (Geomagnetic Depth Sounding) method, one of extremely low-frequency EM methods, has been carried out to examine conductivity anomalies in and around the Korean Peninsula. In this study, new GDS data acquired at the five sites in south-eastern area of the peninsula were incorporated into the previous GDS data. In order to quantitatively interpret observed induction arrows, the 3-D MT modeling considering the surrounding seas of the Korean Peninsula has been performed to evaluate sea effect at each GDS site. The modeling results revealed that the observed real induction arrows were not explained by solely sea effects, consequently two conductive structures that are responsible for the discrepancies between observed and calculated induction arrows were proposed. The first one is the Imjingang Belt, which is thought as an extension of Quiling-Dabie-sulu continental collision belt. The effects of the Imjingang Belt clearly appear at the site YIN and ICHN. The second one is the HCL (Highly Conductive Layer), which is considered as a conductive anomaly by mantle upwelling produced in back-basin region. The effects of the HCL are seen at the site KZU, KMT101, and KMT 107 in the south-eastern region of the Korean Peninsula.

  • PDF

A Study on magnetic sensor calibration for indoor smartphone position tracking (스마트폰 실내 위치 추적을 위한 지자기 센서 보정에 관한 연구)

  • Lee, Dongwook;Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.229-235
    • /
    • 2018
  • Research on indoor location tracking technology using smart phone is actively being carried out. Especially, in order to display the movement path of the smartphone on the map, the azimuth angle should be estimated by using the geomagnetic sensor built in most smart phones. Due to the distortion of the magnetic field due to the surrounding steel structure and the inclination of the smartphone, the estimation error of azimuthal angle may be occurred. In this paper, we propose a correction method of the geomagnetic sensor at the stationary state and a correction method for the inclination of the smartphone. We also propose a method to correct the azimuth error due to the difference between the magnetic north and the grid north.

Storm-Time Behaviour of Meso-Scale Field-Aligned Currents: Case Study with Three Geomagnetic Storm Events

  • Awuor, Adero Ochieng;Baki, Paul;Olwendo, Joseph;Kotze, Pieter
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.133-147
    • /
    • 2019
  • Challenging Minisatellite Payload (CHAMP) satellite magnetic data are used to investigate the latitudinal variation of the storm-time meso-scale field-aligned currents by defining a new metric called the FAC range. Three major geomagnetic storm events are considered. Alongside SymH, the possible contributions from solar wind dynamic pressure and interplanetary magnetic field (IMF) $B_Z$ are also investigated. The results show that the new metric predicts the latitudinal variation of FACs better than previous studies. As expected, the equatorward expansion and poleward retreat are observed during the storm main phase and recovery phase respectively. The equatorward shift is prominent on the northern duskside, at ${\sim}58^{\circ}$ coinciding with the minimum SymH and dayside at ${\sim}59^{\circ}$ compared to dawnside and nightside respectively. The latitudinal shift of FAC range is better correlated to IMF $B_Z$ in northern hemisphere dusk-dawn magnetic local time (MLT) sectors than in southern hemisphere. The FAC range latitudinal shifts responds better to dynamic pressure in the duskside northern hemisphere and dawnside southern hemisphere than in southern hemisphere dusk sector and northern hemisphere dawn sector respectively. FAC range exhibits a good correlation with dynamic pressure in the dayside (nightside) southern (northern) hemispheres depicting possible electrodynamic similarity at day-night MLT sectors in the opposite hemispheres.