• Title/Summary/Keyword: geology investigation

Search Result 331, Processing Time 0.027 seconds

A Study on the Utilization of Drilling Investigation Information (시추조사 정보 활용방안에 관한 연구)

  • Jinhwan Kim;Yong Baek;Jong-Hyun Lee;Gyuphil Lee;Woo-Seok Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.531-541
    • /
    • 2023
  • The most important thing in the 4th industry, AI era, and smart construction era is digital data. Basic data in the civil engineering field begins with ground investigation. The Ministry of Land, Infrastructure and Transport operates the Geotechnical Information Database Center to manage ground survey data, including drilling but the focus is on data distribution. This study seeks to devise a plan for long-term use of the results of drilling investigation conducted for the design and construction of various construction projects. For this purpose, a pilot area was set up and a 'geotechnical design parameters digital map' was created using some geotechnical design parameters from the drilling investigation data. Using the developed algorithm, a digital map of friction angle and permeability coefficient for the hard rock stratum in the pilot area was created. Geotechnical design parameters digital map can identify the overall condition of the ground, but reliability needs to be improved due to the lack of initial data input. Through additional research, it will be possible to produce a more complete geotechnical design parameters digital map.

측정불확도를 응용한 오염토양부지 조사의 최적화 방안

  • 이종천
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.39-42
    • /
    • 2003
  • 중금속으로 오염된 폐광산 주변부나 유류누출로 인한 토양오염 등과 같은 오염부지에 대한 환경조사는 그 결과를 토대로 환경계획이나 정책이 수립되므로 의사결정의 기초가 된다. 이때, 의사결정의 타당성은 오염부지 조사결과 오염도가 얼마나 정확하게 측정되었느냐에 따라 달리 평가되어 진다. 그러므로 이와 같은 환경조사는 측정결과의 불확실성이 감소되도록 정밀한 시료채취방법이나 분석방법을 고안하여 적용해야 한다. (중략)

  • PDF

The Study on the Confidence Building for Evaluation Methods of a Fracture System and Its Hydraulic Conductivity (단열체계 및 수리전도도의 해석신뢰도 향상을 위한 평가방법 연구)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.213-227
    • /
    • 2005
  • This study aims to assess the problems with investigation method and to suggest the complementary solutions by comparing the predicted data from surface investigation with the outcome data from underground cavern. In the study area, one(NE-1) of 6 fracture zones predicted during the surface investigation was only confirmed in underground caverns. Therefore, it is necessary to improve the confidence level for prediction. In this study, the fracture classification criteria was quantitatively suggested on the basis of the BHTV images of NE-1 fracture zone. The major orientation of background fractures in rock mass was changed at the depth of the storage cavern, the length and intensity were decreased. These characteristics result in the deviation of predieted predicted fracture properties and generate the investigation bias depending on the bore hole directions and investigated scales. The evaluation of hydraulic connectivity in the surface investigation stage needs to be analyze by the groundwater pressures and hydrochemical properties from the monitoring bore hole(s) equipped with a double completion or multi-packer system during the test bore hole is pumping or injecting. The hydraulic conductivities in geometric mean measured in the underground caverns are 2-3 times lower than those from the surface and furthermore the horizontal hydraulic conductivity in geometric mean is six times lower than the vertical one. To improve confidence level of the hydraulic conductivity, the orientation of test hole should be considered during the analysis of the hydraulic conductivity and the methodology of hydro-testing and interpretation should be based on the characteristics of rock mass and investigation purposes.

Foundation Design Practice for Highrise Buildings in Korea

  • Kim, Sungho;Hong, Seunghyeun;Choi, Yongkyu
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.4
    • /
    • pp.291-310
    • /
    • 2015
  • It is common for tall buildings in Korea to have a ground response that is highly sensitive to the behavior of the structure. Therefore, the geology of the ground needs to be carefully assessed and considered in the design process to accurately predict the performance of the foundation system. This paper sets out a systematic design approach and ground investigation methodology for the soil conditions frequently encountered in Korea. Various foundation design methods are introduced along with several case studies conducted in Korea.

Analyses of Debris Flow Characteristics through Site Investigation (현장 조사를 통한 토석류 특성 분석)

  • Yoo, Nam-Jae;Choi, Young-June;Lee, Cheol-Ju
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.135-143
    • /
    • 2009
  • Most of debris flow occurred in Korea have been known to be caused by the heavy rainfall at the soil deposits on the mother rock, affected by conditions of rainfall, topography and geology, especially terrain deposits. A study on debris flow behavior should be carried out by investigating various types of debris flow systematically and analyzing their complicate characteristics in the engineering view points. Tremendous debris flows occurred at Duksan-ri in Inje-gun of Gangwon province during summer in 2006. These sites are selected to study the characteristics of debris flow by investigating the influencing factors on it and analyzing their correlations between them. Most of data about influencing factors were obtained by visiting sites in field.

  • PDF

Large-scale, Miocene Mud Intrusion into the Overlying Pleistocene Coastal Sediment, Pohang City, SE Korea: Deformation Mechanism, Trigger, and Paleo-seismological Implication for the 2017 Pohang Earthquakes

  • Gihm, Yong Sik;Ko, Kyoungtae;Choi, Jin-Hyuk;Choi, Sung-ja
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.585-596
    • /
    • 2020
  • The 2017 Pohang Earthquakes occurred near a drill site in the Pohang Enhanced Geothermal System. Water injected for well stimulation was believed to have reactivated the buried near-critically stressed Miocene faults by the accumulation of the Quaternary tectonic strain. However, surface expressions of the Quaternary tectonic activity had not been reported near the epicenter of the earthquakes before the site construction. Unusual, large-scale water-escaped structures were identified 4 km away from the epicenter during a post-seismic investigation. The water-escaped structures comprise Miocene mudstones injected into overlying Pleistocene coastal sediments that formed during Marine Isotope Stage 5. This indicates the vulnerable state of the mudstones long after deposition, resulted from the combined effects of rapid tectonic uplift (before significant diagenesis) and the development of an aquifer at their unconformable interface of the mudstone. Based on the detailed field analysis and consideration of all possible endogenic triggers, we interpreted the structures to have been formed by elevated pore pressures in the mudstones (thixotropy), triggered by cyclic ground motion during the earthquakes. This interpretation is strengthened by the presence of faults 400 m from the study area, which cut unconsolidated coastal sediment deposited after Marine Isotope Stage 5. Geological context, including high rates of tectonic uplift in SE Korea, paleo-seismological research on Quaternary faults near the study area, and historical records of paleoearthquakes in SE Korea, also support the interpretation. Thus, epicenter and surrounding areas of the 2017 Pohang Earthquake are considered as a paleoseismologically active area, and the causative fault of the 2017 Pohang Earthquakes was expected to be nearly critical state.

Principles and application of DC resistivity tomography and borehole radar survey. (전기비저항 토모그래피와 시추공 레이다 탐사의 원리 및 응용)

  • Kim Jung-Ho;Yi Myeong-Jong;Cho Seong-Jun;Song Yoon-Ho;Chung Seung-Hwan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.92-116
    • /
    • 1999
  • Tomographic approaches to image underground structure using electrical properties, can be divided into DC resistivity, electromagnetic, and radar tomography, based on the operating frequency. DC resistivity and radar tomography methods have been recently applied to site investigation for engineering purpose in Korea. This paper review these two tomography methods, through the case histories acquired in Korea. As another method of borehole radar survey, borehole radar reflection method is included, and its inherent problem and solution are discussed, how to find the azimuth angle of reflector using direction-finding-antenna. Since the velocity anisotropy of radar wave has been commonly encountered in field data, anisotropic radar tomography is discussed in this paper. In DC resistivity tomography, two subjects are focussed, electrode arrays, and borehole effect owing to the conductive fluid in borehole. Using the numerical modeling data, various kinds of electrode ways are compared, and borehole effect is illustrated. Most of the case histories presented in this paper are compared with known geology, core logging data, and/or Televiewer images.

  • PDF

Evaluation on Risk Assessment for Landslide Hazard of Soil Slope Using the Checklists as a Preliminary Investigation Method (점검표를 이용한 토질사면 산사태 예비조사 방법 평가)

  • Kim, Jae Min;Choi, Jung Chan
    • Economic and Environmental Geology
    • /
    • v.48 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • The objective of this study is to evaluate landslide hazard susceptibility and produce the landslide hazard maps for soil slope using checklists as a preliminary investigation method. Tables, proposed by NDMI (National Disaster Management Institute), are applied for slope stability assessment, and are comprised of checklists on soil slopes. Database including engineering properties of soil is constructed through the field survey and results from previous studies for The Mt. Hwangryoeng area at center of Busan. All data related to creating the thematic maps was carried out using ArcGIS 10.0. Results from using this method indicated that soil slope are evaluated from very stable to stable. Moderate stability has been partially presented along the edge of mountain. Results from landslide hazard maps can be used to prevent damage from landslides and facilitate appropriate land use planning.

Prediction of Geological Condition Ahead of Tunnel Face Using Hydraulic Drilling Data (유압 천공데이터를 이용한 터널 굴진면 전방 지질상태 예측)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Kim, Kwang-Sik;Yim, Sung-Bin;Seo, Kyoung-Won
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.483-492
    • /
    • 2009
  • During construction of a tunnel and underground structure, it is very important to acquire accurate information of the rock mass will be excavated. In this study, the drill monitoring method was applied for rapid prediction of geological condition ahead of the tunnel face. Mechanical data(speed, torque and feed pressure) from drilling process using a hydraulic drilling machine were analyzed to assess rock mass characteristics. Rock mass information acquired during excavation from drilling monitoring were compared with results from horizontal boring and tunnel seismic profiling(TSP). As the result, the drilling monitoring method is useful to assess rock mass condition such as geological structures and physical properties ahead of the tunnel face.