• Title/Summary/Keyword: geological region

Search Result 245, Processing Time 0.023 seconds

Optimal Site Selection of Carbon Storage Facility using Satellite Images and GIS (위성영상과 GIS를 활용한 CO2 지중저장 후보지 선정)

  • Hong, Mi-Seon;Sohn, Hong-Gyoo;Jung, Jae-Hoon;Cho, Hyung-Sig;Han, Soo-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.43-49
    • /
    • 2011
  • In the face of growing concern about global warming, increasing attention has been focused on the reduction of carbon dioxide emissions. One method to mitigating the release of carbon dioxide is Carbon Capture and Storage (CCS). CCS includes separation of carbon dioxide from industrial emission in plants, transport to a storage site, and long-term isolation in underground. It is necessary to conduct analyses on optimal site selection, surface monitoring, and additional effects by the construction of CCS facility in Gyeongsang basin, Korea. For the optimal site selection, necessary data; geological map, landcover map, digital elevation model, and slope map, were prepared, and a weighted overlay analysis was performed. Then, surface monitoring was performed using high resolution satellite image. As a result, the candidate region was selected inside Gyeongnam for carbon storage. Finally, the related regulations about CCS facility were collected and analyzed for legal question of selected site.

Seismic Stratigraphy of the post-Paleozoic Sedimentary Section in the Main Pass area, Northern Gulf of Mexico (멕시코만 Main Pass 해역의 중생대-신생대 퇴적층의 탄성파층서)

  • Suh Mancheol;Pilger Rex H.;Nummedal Dag
    • The Korean Journal of Petroleum Geology
    • /
    • v.4 no.1_2 s.5
    • /
    • pp.1-11
    • /
    • 1996
  • Multichannel deep seismic reflection data in the Main Pass area of the northern Gulf of Mexico are interpreted in this study for the stratigraphy and the depositional history. Structural analysis of deep seismic reflection data provides new information on the locations of paleo-shelf margins and the basement. The basement occurs at about $7.5{\cal}km$ depth at the northern end of seismic line LSU-1 in the Mississippi shelf. The Jurassic and early Cretaceous shelf margins occupy approximately the same position, whereas the Oligocene shelf margin occurs about 28 km farther landward. Ten major seismic stratigraphic sequences are identified for the Mesozoic and Cenozoic sed-imentary section. Correlation of sequence boundaries defined in this study with those in other areas of the circum-Gulf region indicates that majo. regional unconformities formed at the mid-Miocene (10.5 Ma), mid-Oligocene (30 Ma), mid-Cretaceous (97 Ma), and top-Jurassic (131 Ma). Three distinct periods a.e recognized in the depositional history of the Main Pass area of the northern Gulf of Mexico: (1) shallow ma.me deposition du.ins the period from the opening of the Gulf to the mid-Cretaceous, (2) deep marine deposition in the Cretaceous to the mid-Oligocene, and (3) shallow marine deposition prevailed since the mid-Oligocene to present. A comparison of depositional rates between the Main Pass area and the Destin Dome area indicates that the northern Gulf of Mexico continental margin was initiated as a terrigenous sediment wedge province in the late Cretaceous.

  • PDF

Space Radiation Effect on Si Solar Cells (우주 방사능에 의한 실리콘 태양 전지의 특성 변화)

  • Lee, Jae-Jin;Kwak, Young-Sil;Hwang, Jung-A;Bong, Su-Chang;Cho, Kyung-Seok;Jeong, Seong-In;Kim, Kyung-Hee;Choi, Han-Woo;Han, Young-Hwan;Choi, Yong-Woon;Seong, Baek-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.435-444
    • /
    • 2008
  • High energy charged particles are trapped by geomagnetic field in the region named Van Allen Belt. These particles can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-l) was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-l orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-l solar cell degradation was caused by energetic protons which energy is about 700keV to 1.5MeV. Our result can be applied to estimate solar cell conditions of other satellites.

TITAN2D Simulations of Pyroclastic Flows from Small Scale Eruption at Mt. Baekdusan (백두산에서 소규모 분화로 발생 가능한 화쇄류에 대한 TITAN2D 시뮬레이션 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Kim, Sunkyeong;Chang, Cheolwoo;Cho, Eunil;Yang, Innsook;Kim, Yunjeong;Kim, Sanghyun;Lee, Kilha;Kim, Seongwook;Macedonio, Giovanni
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.615-625
    • /
    • 2013
  • Many eruptions of Mt. Baekdusan volcano have been recorded in the historical literatures, and there were unrest precursors in 2002. Based on the geological survey results, it has been recognized that Mt. Baekdusan's Plinian eruptions had caused ashfall, followed by the occurrence of pyroclastic flows, which were caused by the collapse of eruption column. Therefore, we simulated the range of the impacts of pyroclastic flows, which were caused by small eruptions from a specific crater. Based on the simulation results, it can be interpreted that, when the pyroclastic flows are caused by the eruption column collapse from an eruption with less than VEI 3, the impacts will range from the outer rim of the caldera to the mountain slope 7 km at the maximum distance. Furthermore, it is interpreted that, when the eruption column occurs by the crater located inside the caldera, most will be deposited inside the caldera and what overflows will be deposited thickly mostly in the north valley, the upper stream region of Erdaobaihe.

Case Study on the Investigation of Leachate Contamination from Waste Landfill Using Electromagnetic and Magnetic Methods (쓰레기 매립장 주변의 침출수 오염조사 사례: 전자탐사 및 자력탐사의 적용)

  • Son Jeong-Sul;Kim Jung-Ho;Yi Myeong-Jong;Ko Kyung-Seok
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.137-144
    • /
    • 2005
  • In this study, we offered the results of geophysical and geochemical survey on the municipal waste disposal area to delineate the size and extent of leachate contamination. Preliminary to intensive geochemical investigation, we performed two geophysical methods to characterize the survey area. Electromagnetic (EM) and magnetic method were used far site investigation. From the EM method, we can get the information of soil conductivity directly related to the leachate of the contaminations and from magnetic anomalies we can find the boundary of landfill which is not identified on the surface due to soil capping. The results of geophysical survey were well matched to those of geochemical method carried out inside and near the landfill. Electric conductivity (EC) of the groundwater sampled from low resistivity anomaly region of EM result was higher than background value and the border estimated from the magnetic survey showed good agreement with that estimated from the soil gas detection survey.

Investigation of fault in the Kyungju Kaekok-ri area by 2-D Electrical Resistivity Survey (2차원 전기비저항 탐사를 이용한 경주 개곡리 지역의 단층조사)

  • Lee, Chi-Seop;Kim, Hee-Joon;Kong, Young-Sae;Lee, Jung-Mo;Chang, Tae-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.124-132
    • /
    • 2001
  • Electrical resistivity survey has been conducted for delineating geological fault structure in Kaekok-ri near Kyungju. In general, electrical resistivity survey has an advantage of searching buried faults and its traces compared with other geophysical survey methods. Distribution of electrical conductivity in the ground is influenced by the ratio of pores, groundwater and clay minerals. These properties are evidenced indirectly to explain for weathering condition, faults and fracture Bones. Thus the electrical resistivity survey can be an effective method to find buried faults. We have carried out two dimensional (2-D) interpretation by means of smoothness-constrained least-squares and finite element method. Field data used in this paper was acquired at Kaekok-ri, Wuedong-eup, Kyungju-si, where is Ulsan Fault and is close to the region in which debatable quaternary fault traces were found recently. The dipole-dipole array resistivity survey which could show the 2-D subsurface electrical resistivity structure, was carried out in the area with three lines. The results showed good property of fault, fracture zone and fault traces which we estimated were congruous with the results. Through this study, 2-D electrical resistivity survey interpretation for fault is useful to apply.

  • PDF

Study on Landslide Hazard Possibility for Mt. Hwangryeong in Busan Metropolitan City Using the Infinite Slope Model (무한사면 모델을 이용한 부산 황령산 산사태 재해 평가 가능성 검토)

  • Kim, Jae Min;Choi, Jung Chan
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.413-422
    • /
    • 2016
  • With the rapidly increasing population density and development of infrastructure, the loss of life and property damage caused by landslides has increased gradually in urban area. Especially, Because Busan has high percentage of mountainous terrain among the metropolitan in Korea, it is unavoidable to develop mountainous region excessively. The objective of this evaluation is to study on landslide hazard possibility for Mt. Hwangryeong in Busan Metropolitan City using the infinite slope model considering the groundwater level. All data related to creating the thematic maps was carried out using ArcGIS 10.0. The results show that FS (Factor of Safety) for landslide is inversely proportional to groundwater level change as expected. Most area indicates stable state in dry condition, and unstable area increase due to high pore water pressure when the groundwater level rise. However, several places in high lineament density area where landslide has been previously occurred, are more stable than other places according to the analysis. This inconsistency between real situation and analysis results indicates that additional analytical method would be necessary to solve the problem. Therefore, we suggest that development of new infiltration theory for unsaturated zone would be helpful to evaluate groundwater level distribution as time goes by.

Geophysical Investigations of the Grenville Front in Ohio, USA (미국 오하이오주에 위치하는 그랜빌 프런트의 지구물리학적 연구)

  • Don Sunwoo;Hinze William J.;Kim Jeong Woo
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.285-297
    • /
    • 2005
  • Seismic reflection profile analysis, potential field analysis, and potential field modeling using deep seismic reflection, gravity, magnetic, and geological data were performed to better understand the location and nature of the Grenville Front in Ohio, USA. The seismic reflection profile reveals a broad zone of east dipping basement reflectors associated with the Grenville Front in western Ohio and a broad region of west dipping reflectors cutting through the entire crust in eastern Ohio. Potential field analysis indicates that the Grenville Front is characterized by a gravity low, an associated gravity positive and a magnetic high. The results of the gravity and magnetic modeling using seismic data suggest that the lower crust is thickened at the interpreted position of the Grenville Front and high grade metamorphic rocks make up the Grenville Front Tectonic Zone (GFTZ). The gravity low at the Grenville Front is due to the thickened crust, while the magnetic high is due to high grade metamorphic rocks. The gravity high immediately east of the GFTZ in central Ohio is caused by thrusting of high density lower and middle crustal rocks into the upper crust. There is no compelling evidence that this gravity high is related to a Precambrian rift zone as has been suggested in previous studies.

Computation of Complete Bouguer Anomalies from Free-air Anomalies in East Sea (동해 지역의 프리에어 이상으로부터 완전부우게 이상의 계산)

  • Yun, Hong-Sik;Lee, Dong-Ha;Kim, Young-Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.317-328
    • /
    • 2010
  • This paper describes the results of complete Bouguer anomalies computed from the Free-air anomalies that derived from Sandwell and DNSC08 marine gravity models. Complete bouguer corrections consist of three parts: the bouguer correction (Bullard A), the curvature correction (Bullard B) and the terrain correction (Bullard C). These all corrections have been computed over the East Sea on a $1'{\times}1'$elevation data (topography and bathymetry) derived from ETOPO1 global relief model. In addition, a constant topographic (sea-water) density of $2,670kg/m^3$($1,030kg/m^3$) has been used for all correction terms. The distribution of complete bouguer anomalies computed from DNSC08 are -34.390 ~ 267.925 mGal, and those from Sandwell are -32.446 ~ 266.967 mGal in East Sea. The mean and RMSE value of the difference between DNSC08 and Sandwell is $0.036{\pm}2.373\;mGal$. The highest value of complete bouguer anomaly are found around the region of $42{\sim}43^{\circ}N$ and $137{\sim}139^{\circ}E$ (has the lowest bathymetry) in both models. These values show that the gravity distribution of both models, DNSC08 and Sandwell, are very similar. They indicate that satellite-based marine gravity model can be effectively used to analyze the geophysical, geological and geodetic characteristics in East Sea.

Geophysical and Geological Exploration of Cobalt-rich Ferromanganese Crusts on a Seamount in the Western Pacific (서태평양 해저산 고코발트 망간각 자원평가를 위한 광역 탐사 방안)

  • Kim, Jonguk;Ko, Young-Tak;Hyeong, Kiseong;Moon, Jai-Woon
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.569-580
    • /
    • 2013
  • Co-rich ferromanganese crusts (Fe-Mn crusts) distributed on the seamounts in the western Pacific are potential economic resources for cobalt, nickel, platinum, and other rare metals in the future. Regulations for prospecting and exploration of Fe-Mn crusts in the Area, which enables the process to obtain an exclusive exploration right for blocks of the fixed size, were enacted recently by the International Seabed Authority, which led to public attention on its potential for commercial development. Evaluation and selection of a mining site can be established based on abundance and grade of Fe-Mn crusts in the site as well as topography that should be smooth enough for mining efficiency. Therefore, acquisition of shipboard echo-sounding and acoustic backscatter data are prerequisite to select potential mine sites in addition to visual and sampling operations. Acoustic backscatter data can be used to locate crust-covered areas in a regional scale with the understanding of acoustic properties of crust through its correlation with visual and sampling data. KIOST had collected the topographic and geologic data to assess the resources potential for Fe-Mn crusts in the west Pacific region from 1994 to 2001. However, they could not obtain acoustic backscatter data that is crucial for the selection of prospective mining sites. Therefore, additional exploration surveys are required to carry out side scan sonar mapping combined with seafloor observation and sampling to decide the blocks for application of an exclusive exploration right.