• Title/Summary/Keyword: geological properties

Search Result 393, Processing Time 0.023 seconds

Soil development and bacterial community shifts along the chronosequence of the Midtre Lovénbreen glacier foreland in Svalbard

  • Kwon, Hye Young;Jung, Ji Young;Kim, Ok-Sun;Laffly, Dominique;Lim, Hyoun Soo;Lee, Yoo Kyung
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.461-476
    • /
    • 2015
  • Global warming has accelerated glacial retreat in the high Arctic. The exposed glacier foreland is an ideal place to study chronosequential changes in ecosystems. Although vegetation succession in the glacier forelands has been studied intensively, little is known about the microbial community structure in these environments. Therefore, this study focused on how glacial retreat influences the bacterial community structure and its relationship with soil properties. This study was conducted in the foreland of the Midtre Lovénbreen glacier in Svalbard (78.9°N). Seven soil samples of different ages were collected and analyzed for moisture content, pH, soil organic carbon and total nitrogen contents, and soil organic matter fractionation. In addition, the structure of the bacterial community was determined via pyrosequencing analysis of 16S rRNA genes. The physical and chemical properties of soil varied significantly along the distance from the glacier; with increasing distance, more amounts of clay and soil organic carbon contents were observed. In addition, Cyanobacteria, Firmicutes, and Actinobacteria were dominant in soil samples taken close to the glacier, whereas Acidobacteria were abundant further away from the glacier. Diversity indices indicated that the bacterial community changed from homogeneous to heterogeneous structure along the glacier chronosequence/distance from the glacier. Although the bacterial community structure differed on basis of the presence or absence of plants, the soil properties varied depending on soil age. These findings suggest that bacterial succession occurs over time in glacier forelands but on a timescale that is different from that of soil development.

Soil Property of Coastal Soft Ground Considering Geological Property (지질학적 특성을 고려한 해안연약지반의 토질특성)

  • 송무영;김팔규;김연천;류권일
    • The Journal of Engineering Geology
    • /
    • v.7 no.3
    • /
    • pp.217-227
    • /
    • 1997
  • The purpose of this study is to analyze the correlation of soil properties in coastal soft ground. For the purpose of this study, several coastal soft ground areas were selected. Many large scale construction works are being executed and will increase continuously in these soft ground areas. So, soil property in these areas is very important. The grounds forming coastal areas are affected by seawater movement. So, most of these areas consist of alluvium stratum. Therefore, soil properties of eastern and southern coastal areas are very complex. Many laboratory tests were executed with disturbed and undisturbed soil samples. Undisturbed samples were taken by using thin walled tubes and transported into the laboratory with caution, so as not to disturb the sample. The consistent rate of fine-grained content in these areas is over 90%. Also, these areas contain higher water content and clay content. Therefore, knowing these soil properties, it is possible to safely design fabrics and constructions.

  • PDF

Introduction of Numerical Analysis Method for Calculation of Diffusion Property in Interlayer Water of Expansible Clay Mineral (팽창성 점토광물 내 층간수의 확산특성분석을 위한 수치해석학적 방법)

  • Choi, Jung-Hae;Chae, Byung-Gon;Chon, Chul-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.211-220
    • /
    • 2012
  • The numerical modeling and simulation have been used increasingly as tools for examining and interpreting the bulk structure and properties of materials. The use of molecular dynamics (MD) simulations to model the structure of materials is now both widespread and reasonably well understood. In this research, we introduced the numerical method to calculate the physico-chemical properties such as a diffusion coefficient and a viscosity of clay mineral. In this research, a series of MD calculations were performed for clay mineral and clay-water systems, appropriate to a saturated deep geological setting. Then, by using homogenization analysis (HA), the diffusion coefficients are calculated for conditions of the spatial distribution of the water viscosity associated with some configuration of clay minerals. This result of numerical analysis is quite similar to the previous experimental results. It means that the introduced numerical method is very useful to calculate the physico-chemical properties of clay minerals under various environmental conditions.

Predicting rock brittleness indices from simple laboratory test results using some machine learning methods

  • Davood Fereidooni;Zohre Karimi
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.697-726
    • /
    • 2023
  • Brittleness as an important property of rock plays a crucial role both in the failure process of intact rock and rock mass response to excavation in engineering geological and geotechnical projects. Generally, rock brittleness indices are calculated from the mechanical properties of rocks such as uniaxial compressive strength, tensile strength and modulus of elasticity. These properties are generally determined from complicated, expensive and time-consuming tests in laboratory. For this reason, in the present research, an attempt has been made to predict the rock brittleness indices from simple, inexpensive, and quick laboratory test results namely dry unit weight, porosity, slake-durability index, P-wave velocity, Schmidt rebound hardness, and point load strength index using multiple linear regression, exponential regression, support vector machine (SVM) with various kernels, generating fuzzy inference system, and regression tree ensemble (RTE) with boosting framework. So, this could be considered as an innovation for the present research. For this purpose, the number of 39 rock samples including five igneous, twenty-six sedimentary, and eight metamorphic were collected from different regions of Iran. Mineralogical, physical and mechanical properties as well as five well known rock brittleness indices (i.e., B1, B2, B3, B4, and B5) were measured for the selected rock samples before application of the above-mentioned machine learning techniques. The performance of the developed models was evaluated based on several statistical metrics such as mean square error, relative absolute error, root relative absolute error, determination coefficients, variance account for, mean absolute percentage error and standard deviation of the error. The comparison of the obtained results revealed that among the studied methods, SVM is the most suitable one for predicting B1, B2 and B5, while RTE predicts B3 and B4 better than other methods.

Characteristics of S-wave and P-wave velocities in Gyeongju - Pohang regions of South Korea: Correlation analysis with strength and modulus of rocks and N values of soils

  • Min-Ji Kim;Tae-Min Oh;Dong-Woo Ryu
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.577-590
    • /
    • 2024
  • With increasing demand for nuclear power generation, nuclear structures are being planned and constructed worldwide. A grave safety concern is that these structures are sensitive to large-magnitude shaking, e.g., during earthquakes. Seismic response analysis, which requires P- and S-wave velocities, is a key element in nuclear structure design. Accordingly, it is important to determine the P- and S-wave velocities in the Gyeongju and Pohang regions of South Korea, which are home to nuclear power plants and have a history of seismic activity. P- and S-wave velocities can be obtained indirectly through a correlation with physical properties (e.g., N values, Young's modulus, and uniaxial compressive strength), and researchers worldwide have proposed regression equations. However, the Gyeongju and Pohang regions of Korea have not been considered in previous studies. Therefore, a database was constructed for these regions. The database includes physical properties such as N values and P- and S-wave velocities of the soil layer, as well as the uniaxial compressive strength, Young's modulus, and P- and S-wave velocities of the bedrock layer. Using the constructed database, the geological characteristics and distribution of physical properties of the study region were analyzed. Furthermore, models for predicting P- and S-wave velocities were developed for soil and bedrock layers in the Gyeongju and Pohang regions. In particular, the model for predicting the S-wave velocity for the soil layers was compared with models from previous studies, and the results indicated its effectiveness in predicting the S-wave velocity for the soil layers in the Gyeongju and Pohang regions using the N values. The proposed models for predicting P- and S-wave velocities will contribute to predicting the damage caused by earthquakes.

Relations between Physical and Mechanical Properties of Core Samples from the Bukpyeong and Pohang Basins (북평분지와 포항분지 시추코어의 물리적 성질과 역학적 성질간의 관계)

  • Kim, Hyunjin;Song, Insun;Chang, Chandong;Lee, Hikweon;Kim, Taehee
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.329-340
    • /
    • 2013
  • A geologic survey of the Bukpyeong and Pohang basins, as candidate basins for the geological storage of $CO_2$, was performed to evaluate storage capacity and security. To analyze the mechanical stability of the storage reservoir and cap rocks, we measured the porosity, seismic velocity, uniaxial strength, internal frictional angle, and Young's modulus of core samples recovered from the two basins. It is costly and sometimes impossible to conduct tests over the entire range of drill holes, and continuous logging data do not yield the mechanical parameters directly. In this study, to derive the mechanical properties of geologic formations from the geophysical logging data, we determined the empirical relations between the physical properties (seismic velocity, porosity, and dynamic modulus) and the mechanical properties (uniaxial strength, internal friction angle) of the core samples. From the comparison with our core test data, the best fits to the two basins were selected from the relations suggested in previous studies. The relations between uniaxial strength, Young's modulus, and porosity of samples from the Bukpyeong and Pohang basins are more consistent with certain rock types than with the locality of the basins. The relations between the physical and mechanical properties were used to estimate the mechanical rock properties of geologic formations from seismic logging data. We expect that the mechanical properties could also be used as input data for a modeling study to understand the mechanical instability of rock formations prior to $CO_2$ injection.

Study on the Characteristics of the Stone-Cultural-Properties and Weathering Phenomena of the Rocks for Conservation(II) - Naju, Hwasun, and a Part of Jangheung, Cheollanam-do (보존을 위한 석조문화재의 특징과 암석의 풍화현상에 대한 연구(II) -전라남도 나주시, 화순군, 장흥군 일부지역-)

  • Lee, Sang Hun;Shin, Cheol Kyun;Choi, Gi Ju
    • Journal of Conservation Science
    • /
    • v.6 no.1 s.7
    • /
    • pp.31-60
    • /
    • 1997
  • Stone-cultural-properties, distributed in Naju, Hwasun and a part of Jangheung, have been investigated and studied on the characteristics, rock weathering and phases in the geological and conservational points of view. The properities involve pagoda and twelve stupas, four stone-buddha, three stone monuments, two stone-lantern, four stone-Jangseung, one and flag-pole. The rocks used are mainly pebble-bearing tuffaceous rocks of the Cretaceous age which are widely distributed in the area. However, granites are also used in some properties. These rocks are strongly influenced by weathering and pervasive moss. The mottled rock surfaces in some properties are in colors due to pervasive moss different. Parts of some cultural properties are broken which results in structurally unstable. Cultural properties in the area are relatively well conserved at the earth consolidated by ramming and by iron fence. However some cultural properties are partly repaired by using other hinds of rock phases which results in different colors in weathered rock surface. For conservation, rock phases, weathered surface colors, and relationships with original parts must be scientifically considered in repairment forward.

  • PDF

Engineering Properties of Sewage Sludge Landfill Ground in Nanji-Do (난지도 하수슬러지 매립지반의 공학적 특성)

  • Song, Young-Suk;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.125-133
    • /
    • 2007
  • The environmental and geotechnical properties are investigated to the 8th landfill area made of only sewage sludge in Nanji-Do. To do this, the soils are sampled in this area, and leaching tests, heavy metal content tests, and so on are performed to research the environmental properties. As the result of heavy metal content tests, Pb, Zn, Cu, Ni, Cd and Cr were leached from the sewage sludge. Because the leaching concentration of Cu is more than the standard value of California state, Cu content have to bring down during the recycling of the sewage sludge. Meanwhile, a series of tests concerning specific gravity, liquid and plastic limits, compaction, permeability and shear strength is performed to research the geotechnical properties. The sewage sludge is consisted of sand, silt and clay, and is classified into non-organic silt or organic clay with 42.3% of plastic index. As the result of compaction test, it is expected that the compaction effect according to variation of water contents is low relatively because the dry unit weight is low and the curve of compaction forms flatness. Also, as the result of direct shear tests, the cohesion is $0.058kg/cm^2$, and the internal friction angle is $14^{\circ}$. Taking everything into consideration, the various problems are happening in case of recycling the sludge like the cover layer of landfill and so on because the compaction is bad, and the shear strength is low. Also, it is expected that the ground water pollution caused by leaching the heavy metal into the sludge. To do recycling the sewage sludge in this site, supplementary and treatment programs should be prepared.

Implication of the Ratio of Exchangeable Cations in Mountain Wetlands (산지습지 치환성 양이온 함량비의 특성과 함의)

  • Shin, Young Ho;Kim, Sung Hwan;Rhew, Hosahang
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.2
    • /
    • pp.221-244
    • /
    • 2014
  • We suggested several implications by examining geochemical properties of sediments in Simjeok, Jangdo, and Hwaeomneup mountain wetlands which are natural preservation areas. Geochemical properties of wetland sediments show that all wetlands were included in the type of fens, but their distribution patterns were different from one another. We classified three sub-groups of sediments using the two step cluster analysis on the ratio of exchangeable cations. Wetland sediments can be grouped into Ca-dominated, Mg-dominated, and K-dominated types. Simjeok wetland have Ca-dominated sediments, while the sediments of Jangdo wetland indicate the Mg-dominated and Ca-dominated characteristics. Hwaeomneup wetland is composed of K-dominated sediment mainly. Different properties in the ratio are affected by various environmental factors such as geological, pedological, and vegetational settings. Because these geochemical properties will be affected by climate change and human impacts, these will be environmental indicator in mountain wetlands and be used in wetland management. This scheme can be used for classification of mountain wetlands. Therefore, we should work on geochemical properties of wetland sediments and classification schemes based on geochemical properties not only to widen understanding in geomorphic system or ecosystem of mountain wetlands but to conserve mountain wetlands properly.

  • PDF

Prediction of Landslide Using Artificial Neural Network Model (인공신경망모델을 이용한 산사태 예측)

  • 홍원표;김원영;송영석;임석규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.67-75
    • /
    • 2004
  • The landslide is one of the most significant natural disasters, which cause a lot of loss of human lives and properties. The landslides in natural slopes generally occur by complicated problems such as soil properties, topography, and geology. Artificial Neural Network (ANN) model is efficient computing technique that is widely used to solve complicated problems in many research fields. In this paper, the ANN model with application of error back propagation method was proposed for estimation of landslide hazard in natural slope. This model can evaluate the possibility of landslide hazard with two different approaches: one considering only soil properties; the other considering soil properties, topography, and geology. In order to evaluate reasonably the landslide hazard, the SlideEval (Ver, 1.0) program was developed using the ANN model. The evaluation of slope stability using the ANN model shows a high accuracy. Especially, the prediction of landslides using the ANN model gives more stable and accurate results in the case of considering such factors as soil, topographic and geological properties together. As a result of comparison with the statistical analysis(Korea Institute of Geosciences and Mineral Resources, 2003), the analysis using the ANN model is approximately equal to the statistical analysis. Therefore, the SlideEval (Ver. 1.0) program using ANN model can predict landslides hazard and estimate the slope stability.