• Title/Summary/Keyword: geological group

Search Result 215, Processing Time 0.029 seconds

Modelling of the fire impact on CONSTOR RBMK-1500 cask thermal behavior in the open interim storage site

  • Robertas Poskas;Kestutis Rackaitis;Povilas Poskas;Hussam Jouhara
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2604-2612
    • /
    • 2023
  • Spent nuclear fuel and long-lived radioactive waste must be carefully handled before disposing them off to a geological repository. After the pre-storage period in water pools, spent nuclear fuel is stored in casks, which are widely used for interim storage. Interim storage in casks is very important part in the whole cycle of nuclear energy generation. This paper presents the results of the numerical study that was performed to evaluate the thermal behavior of a metal-concrete CONSTOR RBMK-1500 cask loaded with spent nuclear fuel and placed in an open type interim storage facility which is under fire conditions (steady-state, fire, post-fire). The modelling was performed using the ANSYS Fluent code. Also, a local sensitivity analysis of thermal parameters on temperature variation was performed. The analysis demonstrated that the maximum increase in the fuel load temperatures is about 10 ℃ and 8 ℃ for 30 min 800 ℃ and 60 min 600 ℃ fires respectively. Therefore, during the fire and the post-fire periods, the fuel load temperatures did not exceed the 300 ℃ limiting temperature set for an RBMK SNF cladding for long-term storage. This ensures that fire accident does not cause overheating of fuel rods in a cask.

A Study on the Fashion Sensibilities of Korean Clubbers (한국 클러버(Clubber)의 패션 스타일 연구)

  • Kim, Ji-Lyang;Choy, Hyon-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.4
    • /
    • pp.155-170
    • /
    • 2008
  • Club culture is the global trend for youth in 21st century. Club is the space that is created with close relationship among music, dance and fashion. It is also experimental cultural art space with endlessly transforming style. Furthermore it is a space for independent minor culture which represents speciality than generality of cultural appetite and style of club. Cultural communities formed around club and their parties have placed as a strong subculture trend based on youth age group. What they are creating as a subculture could be our tomorrow's main trend and clubbers also could be our major power sources for future. Therefore it is necessary to pay attention to club culture. The purposes of this research are to identify the concept of clubber, to analyzes their basic club culture characteristics and elements, and to find out unique fashion styles of Korean clubber in comparison with the origin. To study club fashion style's origin and background, this study searched a theoretical flow from 1930's to 1990's. Then, Korean clubber's style is derived by comparing background and origin of Korean club culture with those of abroad. To analyze in various point of view, theoretical backgrounds about social, cultural, dresses, and design were considered. Since research target is a visual image, street fashion is analyzed on through, music channels and magazines from 1930's to present as well as designer's art photographies. Internet sites', cub culture association's and sound association's photos were also extracted. as a visual evidences to offer actual evidences. Geological targets are selected among Korean club culture's origin such as Hong-Ik University area, Shin-chon, Chungdam-dong and Apgujung-dong areas. The results of this study are as follows. Firstly, clubber's fashion style influenced magnificently on major fashion design instead of being just youngster's resistance toward control group and it is contributing to our fashion culture to enrich it. Secondly, fashion styles of korean clubbers are based on those of western sub-culture, but with a unique localized history.

ATMOSPHERIC CORRECTION TECHNIQUE FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI) ON COMS

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.467-470
    • /
    • 2006
  • Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meteorological Satellite (COMS) is scheduled for launch in 2008. GOCI includes the eight visible-to-near-infrared (NIR) bands, 0.5km pixel resolution, and a coverage region of 2500 ${\times}$ 2500km centered at 36N and 130E. GOCI has had the scope of its objectives broadened to understand the role of the oceans and ocean productivity in the climate system, biogeochemical variables, geological and biological response to physical dynamics and to detect and monitor toxic algal blooms of notable extension through observations of ocean color. To achieve these mission objectives, it is necessary to develop an atmospheric correction technique which is capable of delivering geophysical products, particularly for highly turbid coastal regions that are often dominated by strongly absorbing aerosols from the adjacent continental/desert areas. In this paper, we present a more realistic and cost-effective atmospheric correction method which takes into account the contribution of NIR radiances and include specialized models for strongly absorbing aerosols. This method was tested extensively on SeaWiFS ocean color imagery acquired over the Northwest Pacific waters. While the standard SeaWiFS atmospheric correction algorithm showed a pronounced overcorrection in the violet/blue or a complete failure in the presence of strongly absorbing aerosols (Asian dust or Yellow dust) over these regions, the new method was able to retrieve the water-leaving radiance and chlorophyll concentrations that were consistent with the in-situ observations. Such comparison demonstrated the efficiency of the new method in terms of removing the effects of highly absorbing aerosols and improving the accuracy of water-leaving radiance and chlorophyll retrievals with SeaWiFS imagery.

  • PDF

Correlation analysis between Engineering properties and mineralogy of clay sediments in New Busan Port area of the estuary of the Nakdong River (낙동강 유역 신항만부지 지역 점토 퇴적물의 광물조성과 토질특성의 상관성)

  • Lee, Son-Kap;Hwang, Jin-Yun;Chung, Seong-Gyo;Kim, Sung-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.483-490
    • /
    • 2004
  • Nakdong River Plain and its adjoining sea arc unusually covered by very thick soft clay sediments which were caned Pusan clays, sometimes reaching 40-70m. Since early 1990s a large number of geotechnical investigations have been carried out for land reclamation works in the area, including Busan city and its neighboring cities. Nevertheless, geotechnical engineers have paid little attention to studying geological characteristics on the clays, except some researches related to mineralogy, geo-chemistry, benthic foraminiferal fauna etc. The purpose of reserach is the knowledge of the correlation between engineering properties and mineralogy of clay sediments. The correlation analysis carry out multiple regression that have independent variables (Engineering properties) and dependent variables (mineralogy, geochemistry). Engineering properties of clay are correlated with the mineral compositions and geochemical characteristics. The result of the analysis is Wn = -0,6Feldspar + 1.1pH + 0.01TDS + 27.5, Ip = 0.36Clay + 1.44Vermiculite + 0.94clay mineral - 22.118, PI. = 0.005TDS - 0.31Feldspar + 22.43, eo = 0.02Vermiculite - 0.01Quartz + TDS + 0.93, ${\nu}$t = 0.009Quartz - 0.06Conductivity + 1.67, E50 = 1.94Vermicuhte - 0.96Kaohnite -0.53silt + 49.64, SR = -0.25Kaolinite + 1.5pH -2.3Conductivity, Cc = 0.03pH + TDS -0.2, LL = 0.5Clay + 1.3Vermiculite + 5.5Conductivity + 0.8Caly mineral -20.48

  • PDF

Analysis on the Earth Science Concepts of the Gifted Science Students and Non-gifted students By the Type of Thinking Styles (과학영재학생과 일반학생의 사고양식에 따른 지구과학 개념 비교)

  • Park, Soo-Gyong
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.708-718
    • /
    • 2004
  • On the basis of Sternberg's theory of mental self-government, this examined the difference in thinking style between gifted science students and non-gifted students, and their earth science concepts by the different types of thinking styles. The subjects were consisted of 120 students from the Busan Science Academy and 122 students from two general high schools in Busan, Korea. All participants responded to the Thinking Styles Inventory which is a self-report test consisting of 65 items, and essay questions for examining the students' earth science concepts. The results are as follows. First, the gifted science students prefer legislative, judical, anarchic, global, and liberal styles, where non-gifted students prefer executive, oligarchic, and conservative styles. Second, Type I thinking style group prove to have more complex concepts in relation to the geological and astronomical areas than those of the Type II thinking style group in both of the gifted and non-gifted students. This indicates that Type I thinking style students use a deep learning approach where Type II thinking style students use a surface learning approach.

Structural control, and Correlation of Uranium Distribution and Mineralogy of Meta-pelites in Ogcheon Terrain, Korea (한반도(韓半島) 옥천대(沃川帶)에 분포(分布)하는 함(含)우라늄층(層)의 지질구조규제(地質構造規制) 및 조성광물(組成鑛物)과 우라늄분포(分布)와의 상관관계연구(相關關係硏究))

  • Park, Bong-Soon;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.13 no.4
    • /
    • pp.215-227
    • /
    • 1980
  • The rock units of Goesan area in the Ogcheon metamor phic terrain established on the basis of field criteria should be redefined into following sequence. Based on shear senses in secondary small structures which are usually observable in the investigated area, the stratigraphy can be lithologically divided into the lower pelite, pebbly mudstone, upper pelite, quartzite and psammite unit in ascending order. This conclusion is in discordance with a previous opinion; Munjuri formation and Guryongsan formation may be equivalent to upper pelite unit, Iwonri formation and Hwanggangri formation to pebbly mudstone. From this, it may be inferred that isoclinal overturned folds repeatly occur in the area. The uranium bearing coaly thin layers in upper pelite unit have relatively broad exposures in Deogpyeongri block of Goesan area along culmination zone in the central part of the investigated area. It is believed that structural feature in the block recognized complexly refolded synform plunging to southwest. Mineralogical and radiometric studies were made on 135 representative samples from the Ogcheon Group of Korea. The mineralogy of all black slate samples is qualitatively similar but quantitatively ·different. The uranium distribution in the studied area show approximately log normal. Uranium in the black slates of the Ogcheon Group was deposited together under same physico-chemical environmental conditions. The chemical and geological factors that controlled the abundance of organic carbon and iron oxides also controlled the uranium content. The relationship of the major components to uranium can be expressed by the following regression equation: $Log(U\times10^4+1)$= 1.70999-0.00367(quartz)0.00512(micas)-0.00930 (other silicates)+0.01911 (iron oxides)-0.03389(other opaques)+0.02062(organic carbon).

  • PDF

Study on the water bursting law and spatial distribution of fractures of mining overlying strata in weakly cemented strata in West China

  • Li, Yangyang;Zhang, Shichuan;Yang, Yingming;Chen, Hairui;Li, Zongkai;Ma, Qiang
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.613-624
    • /
    • 2022
  • A study of the evolution of overburden fractures under the solid-fluid coupling state was conducted based on the geological and mining characteristics of the coal seam depth, weak strata cementation, and high-intensity mining in the mining areas of West China. These mining characteristics are key to achieving water conservation during mining or establishing groundwater reservoirs in coal mines. Based on the engineering background of the Daliuta Coal Mine, a non-hydrophilic simulation material suitable for simulating the weakly cemented rock masses in this area was developed, and a physical simulation test was carried out using a water-sand gushing test system. The study explored the spatial distribution and dynamic evolution of the fractured zone in the mining overburden under the coupling of stress and seepage. The experimental results show that the mining overburden can be vertically divided into the overall migration zone, the fracture extension zone and the collapse zone; additionally, in the horizontal direction, the mining overburden can be divided into the primary fracture zone, periodic fracture zone, and stop-fracture zone. The scope of groundwater flow in the overburden gradually expands with the mining of coal seams. When a stable water inrush channel is formed, other areas no longer generate new channels, and the unstable water inrush channels gradually close. Finally, the primary fracture area becomes the main water inrush channel for coal mines. The numerical simulation results indicate that the overlying rock breaking above the middle of the mined-out area allows the formation of the water-conducting channel. The water body will flow into the fracture extension zone with the shortest path, resulting in the occurrence of water bursting accidents in the mining face. The experimental research results provide a theoretical basis for the implementation of water conservation mining or the establishment of groundwater reservoirs in western mining areas, and this theoretical basis has considerable application and promotion value.

Effect of the support pressure modes on face stability during shield tunneling

  • Dalong Jin;Yinzun Yang;Rui Zhang;Dajun Yuan;Kang Zhang
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.417-426
    • /
    • 2024
  • Shield tunneling method is widely used to build tunnels in complex geological environment. Stability control of tunnel face is the key to the safety of projects. To improve the excavation efficiency or perform equipment maintenance, the excavation chamber sometimes is not fully filled with support medium, which can reduce the load and increase tunneling speed while easily lead to ground collapse. Due to the high risk of the face failure under non-fully support mode, the tunnel face stability should be carefully evaluated. Whether compressive air is required for compensation and how much air pressure should be provided need to be determined accurately. Based on the upper bound theorem of limit analysis, a non-fully support rotational failure model is developed in this study. The failure mechanism of the model is verified by numerical simulation. It shows that increasing the density of supporting medium could significantly improve the stability of tunnel face while the increase of tunnel diameter would be unfavorable for the face stability. The critical support ratio is used to evaluate the face failure under the nonfully support mode, which could be an important index to determine whether the specific unsupported height could be allowed during shield tunneling. To avoid of face failure under the non-fully support mode, several charts are provided for the assessment of compressed air pressure, which could help engineers to determine the required air pressure for face stability.

Characteristics of Fracture System in Precambrian Metamorphic Rocks and Mesozoic Granites from Seokmo-do, Ganghwa-gun (강화군 석모도 일대의 선캠브리아기 변성암류 및 중생대 화강암류에서 발달하는 단열계의 분포특성)

  • Park, Deok-Won;Lee, Chang-Bum
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.123-139
    • /
    • 2010
  • The properties of fracture system in Precambrian Jangbong schist and Mesozoic granites from Seokmo-do, Ganghwa-gun were investigated and analyzed. Most of the fractures measured at outcrops are nearly vertical or steeply dipping. Orientations of fracture sets in terms of frequency order are as follows: Set $1:N2^{\circ}E/77^{\circ}SE$, Set $2:N17^{\circ}E/84^{\circ}NW$, Set $3:N26^{\circ}E/64^{\circ}SE$, Set $4:N86^{\circ}W/82^{\circ}SW$, Set $5:N80^{\circ}W/77^{\circ}NE$, Set $6:N60^{\circ}W/85^{\circ}SW$, Set $7:N73^{\circ}E/87^{\circ}NW$, Set $8:N82^{\circ}W/53^{\circ}NE$, Set $9:N23^{\circ}W/86^{\circ}SW$, Set 10: $N39^{\circ}W/61^{\circ}NE$. Especially, the rose diagram of fracture strikes(N:240) indicates that there are two dorminant directions of N-S~NNE and WNW. These distribution pattern of fractures from Seokmo-do correponds with those of major lineaments from South Korea suggested in previous study. Meanwhile, the scaling properties on the length distribution of fracture populations have been investigated. First, fracture sets from Precambrian Jangbong schist and Mesozoic granites(north and south rock body) has been classified into five groups(group I~V) based on strike and frequency. Then, the distribution chart generalized the individual length-cumulative frequency diagram for above five groups were made. From the related chart, five subpopulations(group I~V) that closely follow a power-law length distribution show a wide range in exponents(-0.79~-1.53). These relative differences in exponent among five groups emphasizes the importance of orientation effect. From the related chart, the diagram of group III occupies an upper region among five groups. Finally, the distribution chart showing the chracteristics of the length frequency distribution for each rock body were made. From the related chart, the diagram of each rock body shows an order of porphyritic biotite granite < hornblende granodiorite < medium-grained biotite granite(south rock body) < medium-grained biotite granite(north rock body) < Precambrian Jangbong schist. From the related chart, the diagram of more older rock body in the formation age tends to occupy an upper region. Especially, the diagram of Precambrian Jangbong schist occupies an upper region compared with the diagrams of Mesozoic granites. These distributional chracteristics suggests that coexistence of new fracture initiation and growing of existing fractures corresponding with stress field acted since the formation of rock body.

Hydrogeological properties around the KURT (KURT 주변지역의 수리지질특성 연구)

  • Lee, Jin-Yong;Kim, Kyung-Su;Park, Kyung-Woo;Han, Woon-Woo
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • Current technology for radioactive waste disposal facility is operated as part of KURT site characterization in terms of reliability assessment is conducted to expand. In this study, a geological model of KURT surrounding area on the basis of flow characteristics of the site-scale hydrogeological study was about. Distributed in the study area into four boreholes were plotted using the stereo net NS, NW, EW, Low-angle fracture group was able to identify the components of geological models and include top soil layer, belt of weathering, Low-angle fracture zone, fracture zone was divided into. Separated by fracture of the hydraulic test of through the groundwater aquifer that provides the flow hydraulic conductivity and insulation hydraulic affecting the slope of the normal distribution for the size and direction by performing statistical analysis of fracture in the direction of local ns The advantage was confirmed. In addition, Low-angle fracture hydraulic conductivity of the value of 3.61e-07 m/s has a value greater than the major fracture, the fracture zones exist in the base rock and base rock and the hydraulic characteristics of the different methods applied and had to have a different interpretation judged by was.