• Title/Summary/Keyword: geological disposal

Search Result 241, Processing Time 0.025 seconds

A Study on the Prediction of HLW Temperature from Natural Ventilation Quantity using CFD (전산유체학을 이용한 고준위 방사성 폐기물 처분장의 자연환기량에 의한 온도예측)

  • Roh, Jang-Hoon;Yu, Yeong-Seok;Jang, Seung-Hyun;Park, Seon-Oh;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.429-437
    • /
    • 2012
  • This study predicted temperature in the disposal tunnels using computational fluid dynamics based on natural ventilation quantity that comes from high altitude and temperature differences that are the characteristics of high level waste repository. The result of the previous study that evaluated quantitatively natural ventilation quantity using a hydrostatic method and CFD shows that significant natural ventilation quantity is generated. From the result, this study performed the prediction of temperature in disposal tunnels by natural ventilation quantity by the caloric values of the wastes, at both deep geological repository and surface repository. The result of analysis shows that deep geological repository is effective for thermal control in the disposal tunnels due to heat transfer to rock and the generation of sufficient natural ventilation quantity, while surface repository was detrimental to thermal control, because surface repository was strongly affected by external temperature, and could not generate sufficient natural ventilation quantity. Moreover, this study found that in the case of deep geological repository with a depth of 200 m, the heatof about $10^{\circ}C$ was transferred to the depth of 500 m. Thus, it is considered that if the high level waste repository scheduled to be built in the country is designed placing an emphasis on thermal control, deep geological repository rather than surface repository is more appropriate.

Investigation of the Safety and Technical Criteria for HLW Disposal in Other Countries (세계 각국의 고준위계기물 처분안전 및 기술기준 고찰)

  • Choi, Jong-Won;Kwon, San-Gi;Ko, Won-Il;Kang, Chul-Hyung
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.119-132
    • /
    • 2001
  • This paper provides the basic technical and safety criteria to guide establishing the reference HLW geological repository system that has been developing based on the recommendations from the international organizations such as IAEA and ICRP as well as the comparison of the regulations of several leading countries in HLW disposal. The proposed criteria and guidelines were categorized by the basic principles and general criteria for the radiological safety and the functional criteria of the repository system components. They would be useful for the development of the national regulations and criteria for HLW disposal in the future. They, of course, will be revised based on the deep geological investigation in Korean Peninsular which will be implemented in the future.

  • PDF

Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System (CANDU 사용후핵연료 처분시스템 효율향상 개념 도출)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kook, Dong-Hak;Lee, Min-Soo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.169-179
    • /
    • 2011
  • There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over $100^{\circ}C$ were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

Structural Design Requirements and Safety Evaluation Criteria of the Spent Nuclear Fuel Disposal Canister for Deep Geological Deposition (심지층 고준위폐기물 처분용기에 대한 설계요구조건 및 구조안전성 평가기준)

  • Kwon, Young-Joo;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.229-238
    • /
    • 2007
  • In this paper, structural design requirements and safety evaluation criteria of the spent nuclear fuel disposal canister are studied for deep geological deposition. Since the spent nuclear fuel disposal canister emits high temperature heats and much radiation, its careful treatment is required. For that, a long term(usually 10,000 years) safe repository for the spent nuclear fuel disposal canister should be secured. Usually this repository is expected to locate at a depth of 500m underground. The canister which is designed for the spent nuclear fuel disposal in a deep repository in the crystalline bedrock is a solid structure with cast iron insert, corrosion resistant overpack and lid and bottom, and entails an evenly distributed load of hydrostatic pressure from underground water and high pressure from swelling of bentonite buffer. Hence, the canister must be designed to withstand these high pressure loads. If the canister is not designed for all possible external loads combinations, structural defects such as plastic deformations, cracks, and buckling etc. may occur in the canister during depositing it in the deep repository. Therefore, various structural analyses must be performed to predict these structural problems like plastic deformations, cracks, and buckling. Structural safety evaluation criteria of the canister are studied and defined for the validity of the canister design prior to the structural analysis of the canister. And structural design requirements(variables) which affect the structural safety evaluation criteria should be discussed and defined clearly. Hence this paper presents the structural design requirements(variables) and safety evaluation criteria of the spent nuclear fuel disposal canister.

  • PDF

Roles and Importance of Microbes in the Radioactive Waste Disposal (방사성폐기물 처분에서 미생물의 역할과 중요성)

  • Baik, Min-Hoon;Lee, Seung-Yeop;Roh, Yeol
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.63-72
    • /
    • 2009
  • Recently the importance and interest for the microbes has been increased because several important results for the effects of microbes on the radioactive waste disposal have been published continuously. In this study, research status and major results on the various roles and effects of microbes in the radioactive waste disposal have been investigated. We investigated and summarized the roles and major results of microbes in a multi-barrier system consisting of an engineered barrier and a natural barrier which is considered in radioactive waste disposal systems. For the engineered barrier, we discussed about the effects of microbes on the corrosion of a waste container and investigated the survival possibility and roles of microbes in a compacted bentonite buffer. For the natural barrier, the roles of microbes present in groundwaters and rocks were discussed and summarized with major results from natural analogue studies. Furthermore, we investigated and summarized the roles and various interactions processes of microbes and their effects on the radionuclide migration and retardation including recent research status. Therefore, it is expected that the effects and roles of microbes on the radioactive waste disposal can be rigorously evaluated if further researches are carried out for a long-term behavior of the disposal system in the deep geological environments and for the effects of microbes on the radionuclide migration through geological media.

  • PDF

Analysis of Siting Criteria of Overseas Geological Repository (I): Geology (국외 심지층 처분장 부지선정기준 분석 (I) : 지질)

  • Jung, Haeryong;Kim, Hyun-Joo;Kim, Min Jung;Cheong, Jae-Yeol;Jeong, Yi-Yeong;Lee, Eun Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.305-311
    • /
    • 2012
  • Geology, hydrogeology, and geochemistry are the main technical siting factors of a geological repository for spent nuclear fuels. This paper focused on how rock's different geological conditions, such as topography, soils, rock types, structural geology, and geological events, influence the functions of the geological repository. In the context, the site selection criteria of various countries were analyzed with respect to the geological conditions. Each country established the criteria based on its important geological backgrounds. For example, it was necessary for Sweden to take into account the effect of ice age on the land uplift and sea level change, whereas Japan defined seismic activity and volcanism as the main siting factors of the geological repository. Therefore, the results of the paper seems to be helpful in preparing the siting criteria of geological repository in Korea.

The Hydrogeological Conditions in the Granitic Area for the Research Program of HLW Disposal in Korea

  • Kim, Chunsoo;Daeseok Bae;Kim, Kyungsu;Yongkwon Koh;Kim, Geonyoung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.51-59
    • /
    • 2004
  • The geological research as a part of HLW disposal program in Korea is carried out to provide necessary data for the establishment of the reference repository system in term of design and safety assessment in the crystalline rock terrains. Six deep boreholes were drilled to obtain hydrogeological and hydrochemical data from Jurassic granites in the Yuseong area, Korea. The core observation, televiewer logging and hydraulic testing were carried out during and after drilling and multi-packer system were installed in the boreholes of 500m depth for hydraulic and hydrochemical monitoring including environmental isotopes. The integration of hydrogeochemical and hydrodynamic data would be built greater confidence for the understanding of groundwater system in fractured rock mass. This geoscientific program could be possible to suggest a general guideline to develop the reference disposal concept of high-level radioactive waste in Korea.

  • PDF

Remote Sensing and GIS for Waste Disposal Site Selection in the Kathmandu Valley: A Case Study of Taikabu Area

  • Tuladhar, Ganga B.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.933-935
    • /
    • 2003
  • Geo-scientifically viable, environmentally suitable, and socially acceptable sanitary landfill sites are very limited in the Kathmandu Valley and is confronted with the burning problem of safe disposal of urban waste. This paper deal with the evaluation and assessment of its interface, following the major criteria defining suitable geological barrier, Cation Exchange Capacity and other necessary physical parameters with the optimum utilization of remotely sense data along with GIS techniques. The study revealed one of the most viable sites at the flat land of natural depression of Taikabu area and has potential to serve all the municipalities of the Kathmandu Valley.

  • PDF

Ignition and flame propagation in hydrogen-air layers from a geological nuclear waste repository: A preliminary study

  • Ryu, Je Ir;Woo, Seung Min;Lee, Manseok;Yoon, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.130-137
    • /
    • 2022
  • In the geological repository of radioactive nuclear waste, anaerobic corrosion can generate hydrogen, and may conservatively lead to the production of hydrogen-air layer. The accumulated hydrogen may cause a hazardous flame propagation resulting from any potential ignition sources. This study numerically investigates the processes of ignition and flame propagation in the layered mixture. Simple geometry was chosen to represent the geological repository, and reactive flow simulations were performed with different ignition power, energy, and locations. The simulation results revealed the effects of power and energy of ignition source, which were also analyzed theoretically. The mechanism of layered flame propagation was suggested, which includes three stages: propagation into the hydrogen area, downward propagation due to the product gas, and horizontal propagation along the top wall. To investigate the effect of the ignition source location, simulations with eight different positions were performed, and the boundary of hazardous ignition area was identified. The simulation results were also explained through scaling analysis. This study evaluates the potential risk of the accumulated hydrogen in geological repository, and illustrates the layered flame propagation in related ignition scenarios.

심지층처분시스템 설정을 위한 기준 사용후핵연료 선정

  • 최종원;고원일;강철형
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.458-463
    • /
    • 1998
  • 고준위방사성페기물의 기준 처분시스템 (Reference Geological Disposal System)의 개념설정을 위하여 현재 국내 원전에서 발생되고 있거나 향후 2010까지 건설될 원전으로부터 발생될 모든 사용 후 핵연료연료의 특성(크기, 무게, 초기농축도, 연소도, 냉각기간 등)을 대표할 수 있는 기준 사용 후 핵연료를 선정하였다.

  • PDF