• 제목/요약/키워드: geologic age

검색결과 100건 처리시간 0.026초

옥천대 서남부 영암과 영산포 석영편암-규암의 지질시대 (Geologic Age of Quartz Schist - Quartzite from Yeongam and Yeongsanpo Areas around Southwestern Part of Ogcheon Belt)

  • 최성자;김동연;송교영
    • 자원환경지질
    • /
    • 제49권2호
    • /
    • pp.155-165
    • /
    • 2016
  • 옥천대 변성퇴적암 분포지역과 영남육괴와 옥천대 경계부에는 석영편암-규암층준이 협재되어 있다. 이들 석영편암-규암의 층서는 조사자에 따라 다르게 분대되어 왔으며, 지질시대 또한 시대 미상, 선캠브리아 혹은 고생대로 보아왔다. 옥천대 서남부의 영암과 영산포 도폭 역의 석영편암-규암 저어콘 연령결과를 고생대 것과 비교 분석하여 영암과 영산포 지역에 분포하는 석영편암-규암의 지질시대를 규명하였다. 연구지역의 석영편암-규암에서 저어콘 연대 분포범위는 $${\geq_-}1.8Ga$$ 이고, 집중연령대는 신시생대의 2.5 Ga 와 고원생대의 1.8 Ga로 중원생대 이후의 저어콘 연대가 결여되어 있으나, 고생대 규암은 원생대에서 고생대까지 광범위한 연령분포를 보이고 집중연령대도 고원생대, 신원생대, 고생대등 여러 곳에서 보인다. 이와 같은 통계적 분석 결과에 의하여 영암과 영산포의 석영편암 내지 규암은 고원생대 이후의 원생대지층으로 해석된다.

강원도 태백 지역의 중부 석탄계 코노돈트 생층서 (Conodont Biostratigraphy of the Middle Carboniferous System in the Taebaek Area, Kangwondo, Korea)

  • 박수인;선승대
    • 한국지구과학회지
    • /
    • 제22권6호
    • /
    • pp.558-570
    • /
    • 2001
  • 강원도 태백시 일대에 분포하는 중기 석탄기의 만항층과 금천층은 사암과 셰일로 구성되며, 여러 매의 석회암이 협재되어 있다. 만항층과 금천층의 석회암에서는 코노돈트와 그 밖의 화석이 풍부하게 산출된다. 이 연구의 목적은 (1) 만항층과 금천층의 코노돈트 화석군을 조사하고, (2) 이를 근거로 코노돈트 생층서대를 확정하며, (3) 코노돈트 화석군과 생층서에 근거하여 만항층과 금천층의 지질시대를 보다 명확히 밝히는 데 있다. 만항층과 금천층의 석회암에서는 6속 11종의 코노돈트가 산출된다. 만항층의 석회암에서 산출되는 코노돈트는 Idiognathodus delicatus, Hindeodus minutus, Streptognathodus sp., Diplognathodus coloradoensis, N. bothrops 및 N. medexultimus이고, 이들 코노돈트에 근거하면 만항층의 코노돈트 생층서대는 Neognathodus bothrops 대로 지정될 수 있다. 만항층의 코노돈트와 Neognathodus bothrops 대에 근거하면 만항층의 지질시대는 북아메리카의 일리노이 분지에 분포하는 중기 석탄기의 아토칸조(Atokan stage)에 대비된다. 금천층 석회암에서 산출되는 코노돈트는 Idiognathodus delicatus, N. medexultimus, N. roundyi, N. dilatus, Diplognathodus edentulus, Hindeodus minutus, Streptognathodus elegantulus 및 Gondolella bella이고, 이들 코노돈트는 Neognathodus roundyi 대에서 산출되는 종들이다. EK라서 금천층의 코노돈트 생층서대는 Neognathodus roundyi 대로 지정될수있다. 이 생층서대와 금천층 코노돈트는 금천층의 지질시대가 북아메리카의 일리노이 분지에 분포하는 중기 석탄기의 더모이네시안 조(Desmoinesian stage)에 대비됨을 지시한다.

  • PDF

마그마관입에 의한 상부퇴적층의 변형에 관한연구 (A Study on the Structural Deformations in the Sedimentary Layer Resulted from Magma Intrusion)

  • 민경덕;김원영
    • 자원환경지질
    • /
    • 제10권1호
    • /
    • pp.37-48
    • /
    • 1977
  • The earth's crust is unceasingly undergoing deformations because of the forces acting upon it. The relationship between the tectonic forces and the resulting deformations are found from the states of stresses in the earth's crust induced by these forces. The study has been attempted to analyze the deformations of the overlying sedimentary layers, which are deformed by the magma intrusion along its lower boundary. The elastic model is constructed to analyze the geologic structures, by means of the theory of elasticity, and then the appropriate boundary conditions are given. The solution of the Airy stress function which satisfies the given boundary conditions is derived from the analytic method. The internal stress distributions of the deformed elastic model layer are portrayed by principal stress trajetories, and then the corresponding potential faults and joints systems are predicted from the Coulomb-Mohr failure criterion. The internal displacement distributions are shown by the calculated displacement components vectors, namely horizontal, vertical and net components. Results of the numerical calculations show the developments of some geologic structures as follows; (1) one set of shear joints and or two sets of shear joints which are oppisite directions, and one set of extension joints parallel to the ${\sigma}_1$ direction, (2) one set of high angle thrusts and normal faults, (3) symmetric fold; both limbs are dipping in opposite direction with low angle. The field work at the Wall-A San area, located near Jinju City, in southern Korea, had accomplished to compare the field structures with the predicted ones. The results of the comparison exhibits the developments of joint and fault systems satisfactorily consistent with each others. But the area does not show any type of folding, in spite of the intrusion of a granodiorite massif, this fact is one of the important features of the whole Kyungsang sedimentary basins of Mesozoic age distributed at the south-eastern parts of Korea. For this reason, it is thought that the magma intrusion had occurred with extremly low pressure. The geologic structures have been modified by the erosion and weathering throughout the geologic time, and the conditions of the sedimentary layers (width, thickness and radius of magma) are not the same as before, being intruded by the magma. To enlighten this, it is preferable to study these geologic structures with analyses of various types of rheological models.

  • PDF

포항 및 장기분지에 대한 고지자기, 층서 및 구조 연구; 중력탐사에 의한 홍해 및 형산강지역의 지질구조 (Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Janggi Basins ; Geologic Structure in the Areas of Heunghae and Hyungsan River by Gravity Prospecting Method)

  • 민경덕;윤혜수;문희수;이현구;김인수
    • 자원환경지질
    • /
    • 제25권3호
    • /
    • pp.351-358
    • /
    • 1992
  • The gravity measurement has been conducted at 327 station with an interval of 25 m along the survey lines of 1.6 km and 1.7 km traversing Hyungsan river and of 2.35 km and 2.42 km running N-S direction near Heunghae-eup in Pohang basin. Bouguer gravity anomalies were obtained, and geologic structure along four survey lines were interpreted by applying Fourier series and Talwani methods for two demensional body. A fault is in existence along the Hyungsan river, and northern block of it is displaced down by 150 m to 200 m relative to southern one. The thicknesses of Yeonil Group vary from 250 m to 550 m and from 150 m to 300 m in the northern and southern blocks of the fault, respectively. Another fault is in existence running E-W direction near Heunghae-eup, and its southern block is displaced down by about 250 m relative to its northern block. The thicknesses of Yeonil Group vary from 200 m to 400 m and from 500 m to 700 m in the southern and northern blocks of the fault, respectively. Above two faults are normal faults and make a graben structure, which results the age of rocks in the central region between the faults is younger than those of outside regions. This result coincides with that of paleontological study.

  • PDF

전남과 광주지역 구성암류의 GIS에 의한 지질시대별 암층별 분포율 및 분포특성 (GIS-based Areal Distribution Ratios and Characteristics of Constituent Rocks with Geologic Ages and Rock Types in Jeonnam and Gwangju Areas)

  • 윤현수;이진영;홍세선;양동윤;김주용;조등룡
    • 암석학회지
    • /
    • 제22권2호
    • /
    • pp.153-177
    • /
    • 2013
  • 국토의 효율적 관리를 위한 각종 지질정보자료로 활용될 수 있도록 ArcGIS 10.1 프로그램, 1 대 250,000의 수치지질도 및 지형도를 사용하여 전남과 광주지역 구성암류의 지질시대별 및 암층별 분포율과 분포특성을 도출하였다. 전남지역 의 지질시대는 모두 7개로 대분되며, 분포율은 백악기, 선캠브리아기, 쥬라기, 제4기, 시대미상, 석탄기-삼첩기 및 삼첩기의 순으로 감소하며, 그 중 전자 넷이 94.80%를 이루어 거의 대부분을 차지한다. 구성암층은 선캠브리아기 15개, 시대미상 6개, 석탄기-삼첩기 3개, 삼첩기 2개, 쥬라기 4개, 백악기 25개 그리고 제4기 2개로서 도합 57개에 달한다. 분포율은 백악기의 Kav(산성 화산암류+유문암 및 유문암질 응회암)와 Kiv(중성 및 염기성 화산암류+안산암 및 안산암질 응회암), 선캠브리아기의 지리산편마암복합체(소백산육괴)인 화강편마암과 반상변정질 편마암, 제4기의 충적층, 쥬라기의 화강암류와 엽리상화강암의 순으로 감소하며 이들이 도합 71.68%의 우세한 값을 이룬다. 그 중 뚜렷하게 우세한 Kav는 전남지역의 북부, 서부, 중부, 동부 및 남부에 보다 넓게 발달하며, 특히 서부인 신안 및 목포-영암, 남부인 해남일대에 더 우세하게 분포하는 양상을 보인다. 광주지역의 지질시대는 모두 5개로 대분되고 분포율은 쥬라기, 제4기, 백악기, 선캠브리아기 그리고 시대미상의 순으로 감소하며, 그 중 전자 넷이 98.95%를 가져 거의 전부를 이룬다. 구성암층은 선캠브리아기 1개, 시대미상 2개, 쥬라기 2개, 백악기 6개와 제4기 1개로서 도합 12개에 달한다. 분포율은 쥬라기 화강암류, 제4기 충적층, 선캠브리아기의 소백산편마암복합체인 화강편마암과 백악기 Kiv 순으로 감소하고 도합 91.30%를 가져 그 대부분을 차지하며 전자 둘에서 뚜렷하게 우세하다. 가장 우세한 화강암류는 대부분 광주지역 남서부에서 북동부 방향에 걸쳐 발달한다. 충적층은 대부분 황룡강, 영산강과 이들의 합류부에 발달하며, 북구에서는 영산강변에서 용두평야 그리고 광산구에서는 영산강과 황룡강 합류부에서 동계평야 등을 이룬다.

국내 대리석류의 지질시대별 산출 및 물리화학적 특성 (Occurrence, physical and petrochemical properties of the marbles by geological ages in South Korea)

  • 윤현수;박덕원;이병대;홍세선
    • 지질공학
    • /
    • 제13권4호
    • /
    • pp.429-444
    • /
    • 2003
  • 국내 대리석류의 산출 및 물리화학적 특성을 지질시대별로 분류하여 규명하였다. 선별된 시료에 대한 지질시대별 물성과 주원소 화학성분의 변화경향과 상관성을 해석하였다. 물성중에서 비중, 흡수율과 공극율은 선캠브리아기, 오오도비스기, 시대미상과 캠브리아기의 순으로 그 값이 점차 감소한다. 흡수율 대공극율은 거의가 뚜렷한 정의 경향을 이룬다. 압축강도 대 인장강도, 그리고 마모경도 대 압축강도는 대부분 정의 경향을 각각 이룬다. 압축강도는 선캠브리아기 1,106 $kg/\textrm{cm}^2$, 시대미상 935 $kg/\textrm{cm}^2$, 캠브리아기 $1,162{\;}kg/\textrm{cm}^2$ 그리고 오오도비스기 $1,560{\;}kg/\textrm{cm}^2$의 값을 각각 가진다. 인장강도는 $79{\;}kg/\textrm{cm}^2,{\;}82{\;}kg/\textrm{cm}^2,{\;}93{\;}kg/\textrm{cm}^2,{\;}96{\;}kg/\textrm{cm}^2$의 값을 각각 가져 지질시대가 오래된 것일수록 대체로 감소하는 경향을 보인다. 화학성분중에서 $SiO_2$$Al_2O_3,{\;}Fe_2O_{3(t)}와{\;}Na_2O+K_2O$에 대하여 대체로 정의 경향을 이룬다. MgO/CaO는 선캠브리아기 0.31, 시대미상 0.30, 캠브리아기 0.03, 오오도비스기 0.08을 가져 고기의 지질시대에서 그 비 값이 뚜렷이 증가한다. MgO는 CaO와 뚜렷한 부의 경향을 이루며, 이는 돌로마이트화작용에 의한 것으로 해석된다. 이들은 지질시대별로 방해석질 돌로마이트, 돌로마이트질 석회암, 석회암 그리고 돌로마이트질 석회암에 각각 해당한다.

옥천 변성대의 시기-우리는 얼마만큼 알고 있나? (The Age of the Okcheon Metamorphic Belt-How Much Do We Know?)

  • 권성택
    • 암석학회지
    • /
    • 제17권2호
    • /
    • pp.51-56
    • /
    • 2008
  • 옥천변성대 암석의 생성시기는 화석의 발견과 동위원소 연대측정으로 대부분 고생대 및 신원생대인 것으로 밝혀지고 있다. 한편 동위원소 연대자료가 축적됨과 더불어 옥천변성대의 변성시기가 페름기 초기인가 혹은 페름기 말기-트라이아스기 초기인가 하는 문제가 대두되었다. 이 문제는 달리 표현하면 위의 두 시기에 해당하는 2번의 중요한 변성작용이 있었는가 혹은 후자 시기에 해당하는 한번의 변성작용인가 하는 것이다. 변성시기를 직접 지시할 수 있는 자료를 비교할 때 페름기 초기의 변성시기에 대한 자료(석류석 내 U-Pb 갈렴석 연대)는 전체적으로 오차가 클 뿐만 아니라 페름기 말기-트라이아스기 초기를 지시하는 자료(CHIME 갈렴석 연대 및 변성 저콘의 U-Pb 연대)와 어느 정도 중첩된다. 따라서 독립적인 두 종류의 자료에 의해 지지되는 후자가 보다 신빙성이 있는 것으로 생각되며, 이 시기는 임진강대와 경기육괴에서 대륙충돌과 관련되어 나타나는 중요한 변성시기와 유사하기 때문께 대륙충돌의 영향이 한반도 넓은 지역에 퍼져 있음을 시사한다.

옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -제천남부(堤川南部)의 옥천계(沃川系)의 조선계(朝鮮系)의 경계(境界) 및 부근(附近)의 지질(地質)- (Geology and Mineral Resources of the Okchǒn Zone-The Boundary between the Okchǒn and Chosǒn Systems in the South of Jechǒn, and the Geology in its Vicinity-)

  • 김옥준;민경덕;김규한
    • 자원환경지질
    • /
    • 제19권3호
    • /
    • pp.225-230
    • /
    • 1986
  • Various interpretations on the boundary between the $Okch{\check{o}}n$ system and the Great Limestone series of the $Chos{\check{o}}n$ system, and on the geologic structure and stratigraphy of the $Okch{\check{o}}n$ system have been yielded by the previous studies, and they are still in hot debate. The present work has mainly studied on the boundary between the $Okch{\check{o}}n$ and $Chos{\check{o}}n$ systems in the south of $Jech{\check{o}}n$, and the geology in its vicinity to clarify the previous misinterpretations if any on the geologic structure and in trun stratigraphy of the area concerned. The boundary between the $Okch{\check{o}}n$ system and the Great Limestone series of the $Chos{\check{o}}n$ system has been thought to be (1) gradational relation which means two systems are the same formation, (2) unconformable relation in which the $Okch{\check{o}}n$ system overlies the $Chos{\check{o}}n$ system, (3) unconformable relation in which the $Chos{\check{o}}n$ system overlies the Okchon system indicating that the age of the $Okch{\check{o}}n$ system is Precambrian, and (4) fault contact in which the $Okch{\check{o}}n$ system of Precambrian age comes in contact with the $Chos{\check{o}}n$ system of Cambro-Ordovician age. The present study clearly found that the relationship between the two systems is a fault zone contact. Shear zone of a width of 300 to 400m is developed, and andesitic volcanics and basic dikes are intruded along the fault zone. This fault contact is exactly the north extension of the Bonghwajae fault, which was denominated long time ago by two of the present authors. The eastern side of the fault has been uplifted so that the $S{\check{o}}changri$ formation of the $Okch{\check{o}}n$ system cropped out in the zone of the Great Limestone series. All the previous workers thought that the $S{\check{o}}changri$ formation rests on the Great Limestone series, but the present study found an overthrust having a strike of $N8^{\circ}E$ and dip of $30^{\circ}NW$ between them, and the $S{\check{o}}changri$ formation has thrusted over the Great Limestone series at the central part of the study area. In the southern and northern parts of this uplifted $S{\check{o}}changri$ formation, the Great Limestone series rests unconformably on it. In the eastern part of the study area where the Mt. Dangdu is located and the previous workers thought that the $S{\check{o}}changri$ formation rests on the Great Limestone series, Precambrian basement rock whose age is older than 1720+50 m.y. crops out in the northern part of the east-west trending high angle fault, and the Great Limestone series rests unconformably on the basement.

  • PDF

포항(浦項) 및 장기분지(盆地)에 대한 고지자기(古地磁氣), 층서(層序) 및 구조연구(構造硏究); 화산암류(火山岩類)의 K-Ar 연대(年代) (Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Changgi Basins; K-Ar Ages for the Volcanic Rocks)

  • 이현구;문희수;민경덕;김인수;윤혜수;이타야 테츠마루
    • 자원환경지질
    • /
    • 제25권3호
    • /
    • pp.337-349
    • /
    • 1992
  • The Tertiary basins in Korea have widely been studied by numerous researchers producing individual results in sedimentology, paleontology, stratigraphy, volcanic petrology and structural geology, but interdisciplinary studies, inter-basin analysis and basin-forming process have not been carried out yet. Major work of this study is to elucidate evidences obtained from different parts of a basin as well as different Tertiary basins (Pohang, Changgi, Eoil, Haseo and Ulsan basins) in order to build up the correlation between the basins, and an overall picture of the basin architecture and evolution in Korea. According to the paleontologic evidences the geologic age of the Pohang marine basin is dated to be late Lower Miocence to Middle Miocene, whereas other non-marine basins are older as being either Early Miocene or Oligocene(Lee, 1975, 1978: Bong, 1984: Chun, 1982: Choi et al., 1984: Yun et al., 1990: Yoon, 1982). However, detailed ages of the Tertiary sediments, and their correlations in a basin and between basins are still controversial, since the basins are separated from each other, sedimentary sequence is disturbed and intruded by voncanic rocks, and non-marine sediments are not fossiliferous to be correlated. Therefore, in this work radiometric, magnetostratigraphic, and biostratigraphic data was integrated for the refinement of chronostratigraphy and synopsis of stratigraphy of Tertiary basins of Korea. A total of 21 samples including 10 basaltic, 2 porphyritic, and 9 andesitic rocks from 4 basins were collected for the K-Ar dating of whole rock method. The obtained age can be grouped as follows: $14.8{\pm}0.4{\sim}15.2{\pm}0.4Ma$, $19.9{\pm}0.5{\sim}22.1{\pm}0.7Ma$, $18.0{\pm}1.1{\sim}20.4+0.5Ma$, and $14.6{\pm}0.7{\sim}21.1{\pm}0.5Ma$. Stratigraphically they mostly fall into the range of Lower Miocene to Mid Miocene. The oldest volcanic rock recorded is a basalt (911213-6) with the age of $22.05{\pm}0.67Ma$ near Sangjeong-ri in the Changgi (or Janggi) basin and presumed to be formed in the Early Miocene, when Changgi Conglomerate began to deposit. The youngest one (911214-9) is a basalt of $14.64{\pm}0.66Ma$ in the Haseo basin. This means the intrusive and extrusive rocks are not a product of sudden voncanic activity of short duration as previously accepted but of successive processes lasting relatively long period of 8 or 9 Ma. The radiometric age of the volcanic rocks is not randomly distributed but varies systematically with basins and localities. It becomes generlly younger to the south, namely from the Changgi basin to the Haseo basin. The rocks in the Changgi basin are dated to be from $19.92{\pm}0.47$ to $22.05{\pm}0.67Ma$. With exception of only one locality in the Geumgwangdong they all formed before 20 Ma B.P. The Eoil basalt by Tateiwa in the Eoil basin are dated to be from $20.44{\pm}0.47$ to $18.35{\pm}0.62Ma$ and they are younger than those in the Changgi basin by 2~4 Ma. Specifically, basaltic rocks in the sedimentary and voncanic sequences of the Eoil basin can be well compared to the sequence of associated sedimentary rocks. Generally they become younger to the stratigraphically upper part. Among the basin, the Haseo basin is characterized by the youngest volcanic rocks. The basalt (911214-7) which crops out in Jeongja-ri, Gangdong-myon, Ulsan-gun is $16.22{\pm}0.75Ma$ and the other one (911214-9) in coastal area, Jujon-dong, Ulsan is $14.64{\pm}0.66Ma$ old. The radiometric data are positively collaborated with the results of paleomagnetic study, pull-apart basin model and East Sea spreading theory. Especially, the successively changing age of Eoil basalts are in accordance with successively changing degree of rotation. In detail, following results are discussed. Firstly, the porphyritic rocks previously known as Cretaceous basement (911213-2, 911214-1) show the age of $43.73{\pm}1.05$$49.58{\pm}1.13Ma$(Eocene) confirms the results of Jin et al. (1988). This means sequential volcanic activity from Cretaceous up to Lower Tertiary. Secondly, intrusive andesitic rocks in the Pohang basin, which are dated to be $21.8{\pm}2.8Ma$ (Jin et al., 1988) are found out to be 15 Ma old in coincindence with the age of host strata of 16.5 Ma. Thirdly, The Quaternary basalt (911213-5 and 911213-6) of Tateiwa(1924) is not homogeneous regarding formation age and petrological characteristics. The basalt in the Changgi basin show the age of $19.92{\pm}0.47$ and $22.05{\pm}0.67$ (Miocene). The basalt (911213-8) in Sangjond-ri, which intruded Nultaeri Trachytic Tuff is dated to be $20.55{\pm}0.50Ma$, which means Changgi Group is older than this age. The Yeonil Basalt, which Tateiwa described as Quaternary one shows different age ranging from Lower Miocene to Upper Miocene(cf. Jin et al., 1988: sample no. 93-33: $10.20{\pm}0.30Ma$). Therefore, the Yeonil Quarterary basalt should be revised and divided into different geologic epochs. Fourthly, Yeonil basalt of Tateiwa (1926) in the Eoil basin is correlated to the Yeonil basalt in the Changgi basin. Yoon (1989) intergrated both basalts as Eoil basaltic andesitic volcanic rocks or Eoil basalt (Yoon et al., 1991), and placed uppermost unit of the Changgi Group. As mentioned above the so-called Quarternary basalt in the Eoil basin are not extruded or intruaed simultaneously, but differentiatedly (14 Ma~25 Ma) so that they can not be classified as one unit. Fifthly, the Yongdong-ri formation of the Pomgogri Group is intruded by the Eoil basalt (911214-3) of 18.35~0.62 Ma age. Therefore, the deposition of the Pomgogri Group is completed before this age. Referring petrological characteristics, occurences, paleomagnetic data, and relationship to other Eoil basalts, it is most provable that this basalt is younger than two others. That means the Pomgogri Group is underlain by the Changgi Group. Sixthly, mineral composition of the basalts and andesitic rocks from the 4 basins show different ground mass and phenocryst. In volcanic rocks in the Pohang basin, phenocrysts are pyroxene and a small amount of biotite. Those of the Changgi basin is predominant by Labradorite, in the Eoil by bytownite-anorthite and a small amount pyroxene.

  • PDF

평창-정선 일대 "행매층"의 분포와 층서적 의의 (Distribution and Stratigraphical Significance of the Haengmae Formation in Pyeongchang and Jeongseon areas, South Korea)

  • 김남수;최성자;송윤구;박채원;최위찬;이기욱
    • 자원환경지질
    • /
    • 제53권4호
    • /
    • pp.383-395
    • /
    • 2020
  • 행매층은 실루리아기 회동리층과 오르도비스기 정선층(정선석회암) 사이에 위치하고 있어, 행매층의 층서적 위치는 회동리층의 존재와 시층서적 논란을 해결하는데 결정적 정보를 제공할 수 있다. 2011년 이후부터 행매층 존재와 함께 암층서 단위가 될 수 있는지에 대하여 논란이 있어왔다. 따라서 본 연구에서는 비룡동-평안리 사이 지역에 대한 정밀 지질조사를 통하여 행매층 분포와 지질구조 특성을 규명하고, 생층서와 절대연령 결과를 대비하여 행매층의 암층서 및 시층서적 의의를 정의하였다. 행매층을 대표하는 암석은 괴상의 황색-황갈색 함력 탄산염암으로 사암과 같은 입상조직을 가지고 있으며 노두 표면이 매우 거칠고 기공이 많이 발달하고 있다. 구성광물의 조성, 함량 및 미세조직 특징을 근거로 볼 때, 행매층의 특성은 역질의 쇄설암으로, 역은 돌로마이트이며 기질은 자형 및 반자형의 돌로마이트와 원마도 및 분급이 좋은 미사질의 석영이 주구성광물로 이루어져있다. 행매층은 조사지역인 정선군 정선읍 용탄리(비룡동)에서 평창군 미탄면 평안리까지 측방으로 연속하여 잘 발달하고 있을 뿐만 아니라 일정한 두께를 가지고 분포하고 있다. 행매층의 층리, 태위 및 층후는 비룡동-행매동 사이 지역에서는 회동리층과 거의 비슷하게 발달하나, 행매동 남서쪽에서는 등사습곡과 충상단층에 의하여 외견상 불규칙한 분포양상을 보인다. 즉 비룡동-행매동 사이에서는 340°±10°/15°의 태위를 유지하면서 200 m 층후로 발달하지만, 평안리 백암 일대에서는 동-서 1.5 km, 남-북 2.5 km에 달하는 넓은 면적을 차지하고 있다. 행매층 내 쇄설성 저어콘 U-Pb 연령은 470-450 Ma 범위를 갖고 있어 행매층의 최대 퇴적시기는 후기 오르도비스기를 지시한다. 또한, 행매층을 구성하는 함력 탄산염암은 쇄설성 퇴적암이므로, 행매층에서 분류된 중기 오르도비스기 코노돈트 화석군은 재퇴적된 이지성을 의미한다. 이는 행매층의 지질시대가 중기 오르도스기 이후 임을 지시한다. 본 연구 결과, 행매층은 전단대일 뿐이며, 정선석회암의 일부이고, 정선석회암과 동일한 시기를 갖는다는 부정적 학설은 타당성을 잃었으며, 행매층은 국제층서위원회(ICS)에서 제시한 층서기준에 적합하게 잘 정의된 암층서 단위임이 확인되었다.