• Title/Summary/Keyword: geogrid-reinforcement

Search Result 129, Processing Time 0.025 seconds

Pullout Characteristics of Geogrid with Attached Passive Reinforcement (마찰돌기를 부착한 지오그리드의 인발특성 평가)

  • Moon, Hongduk;Yoo, Chulho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.43-51
    • /
    • 2014
  • In this study, a series of pullout experiments were conducted on geogrid with attached passive reinforcement with respect to silt containments. Experiments were performed on man-made sand ground containing different silt of 0 %, 17 %, 35 % under various normal stresses 30 kPa, 60 kPa, 120 kPa respectively. The pullout test results showed that passive reinforcement increased the pullout strength over all silt contained condition and showed up to 20 % increases for same soil condition. The test results converted to the coefficient of interaction of pullout test to investigate the effect of reinforcement and the case of passive reinforcement showed 0.7~1.6 distribution depend on a silt contents. Therefore it is concluded that the overall length of geogrid can be reduced under the low vertical stress conditions.

Reinforcement Effectiveness and Arching Effect of Geogrid-Reinforced and Pile-Supported Roadway Embankment (지오그리드로 보강된 성토지지말뚝의 보강 및 아칭효과분석)

  • Shin, Eun Chul;Oh, Young In;Lee, Dong Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.11-18
    • /
    • 2005
  • A pilot scale filed model test and 2-D numerical analysis was conducted to evaluate the effectiveness of constructing a geogrid-reinforced and pile-supported embankment system over soft ground to reduce differential settlement, and the results are presented hearin. Three-by-three pile groups with varying the space between pile were driven into a layer of soft marine clay and a layer of geogrid was used as reinforcement over each pile group. 2-D numerical analysis has been conducted by using the FLAC-2D(Fast Lagrangian Analysis of Continua) program for same condition of field model test. The settlement, vertical stress, and strain of geogrid due to the construction of embankment were measured at various locations. Based on the field model test and numerical analysis results, pile reinforcement generated the soil arching at the midspan of pile cap and the geogrid reinforcement helps reduce the differential settlement of the soft ground by tensile strength of geogrid. Also for $D/b{\geq}6.0$, the effectiveness of geogrid reinforcement in reducing settlement is negligible.

  • PDF

Laboratory Investigation on Construction Method of Geogrid Encased Stone Column (지오그리드 감쌈 Stone Column 제작 방안에 대한 실험적 연구)

  • Lee, Dae-Young;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.73-80
    • /
    • 2011
  • This paper presents the results of a laboratory investigation on construction method of geogrid encased stone column (GESC). In order to analyze effects of load carrying capacity and geogrid deformation characteristics of GESC, a series of medium scale unconfined compression tests with different overlay methods and reduced model tests were performed. The test results show that the method of overlap provides a simple and effective method of encasement construction. It is also found that geogrid encasement construction using method of overlap has important factor which can be applied to field tests. The geogrid encasement method related to effect of reinforcement is presented by laboratory test results.

Evaluation of the geogrid-various sustainable geomaterials interaction by direct shear tests

  • Bahadir Ok;Huseyin Colakoglu;Umud Dagli
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.173-186
    • /
    • 2023
  • In order to prevent environmental pollution, initiatives to increase the sustainability of resources are supported by society. However, the performance of recycled materials does not generally match that of natural materials. This study looks into the use of geogrid to improve various types of recycled aggregates. For this purpose, five different recycled aggregates were created by recycling wastes from the construction industry. Besides, direct shear tests (DS tests) were carried out on these recycled aggregates to determine their shear strengths. Following that, a triaxial geogrid was placed in the recycled aggregates to provide reinforcement, and the DS tests were conducted on the reinforced recycled aggregates. The results of the tests were also compared to those of tests performed on natural aggregates (NA). In conclusion, it was found that the recycled aggregates have lower shear strengths than the NA. Nonetheless, when reinforced with geogrid, the shear strength of the recycled concrete aggregates (RCA) and construction and demolition wastes (CDW) exceeded that of the NA. Furthermore, the geogrid reinforcement increased the shear strength of the recycled crushed bricks (CB), though not to the level of the NA.

Bearing Capacity of Strip Footing on Geogrid-Reinforced Soft Ground (지오그리드로 보강된 연약지반 위에 위치한 연속기초의 극한 지지력)

  • 유충식;신승우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.169-174
    • /
    • 1994
  • This paper presents the results of a parametric study on the bearing capacity behavior of a footing located above geogrid-reinforced ground using the finite element method of analysis. A wide range of boundary conditions were analyzed, with varing geogrid design parameters such as depth of geogrid layer, length and siffness of geogrid, and number of geogrid layer, were analyzed. Based on the results of analysis, the optimum geogrid design parameters were determined, which maximize the reinforcing effect of geogrid reinforcement for a given conidition. Furthermore, the mechanistic behavior of a geogrid-reinforced ground subjected to a footing load was discussed using the results of analysis such as stress distribution, propagation of plastic yielding, displacement vector among others.

  • PDF

Bearing of Strip Foundation on Geogrid-Reinforced Sand With Embedment Depth (기초의 근입깊이를 고려한 지오그리드 보강 사질토지반의 지지력 평가)

  • 신은철;신동훈;오영인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.233-240
    • /
    • 1999
  • The laboratory tests on geogrid-reinforced sand were conducted with considering embedment effect. The relative densities of sand are 60% and 80%, respectively. The embedment depths of foundation were varied as D$\_$f/B=0, 0.5, 1.0. Based on the model test results, (u/B)$\_$cr/, BCR$\_$u/, and (b/B)$\_$cr/, were determined. The optimum depth of reinforcement was determined. The embedment depth of foundation is greatly contributed on the bearing capacity of geogrid-reinforced sand.

  • PDF

Dynamic Load-Permanent Settlement of Shallow Foundations Supported by Geogrid-Reinforced Sand (Geogrid로 보강된 사질토층에 얕은 기초의 동적 하중-침하 관계에 관한 연구)

  • Yeo, Byung Chul;Shin, Bang Woong;Kim, Soo Sam;Das, Braja M.;Yen, Max
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.933-939
    • /
    • 1994
  • This paper has primarily been directed to evaluate the beneficial effects of geogrid reinforcement in a medium sand on the ultimate bearing capacity (UBC) of a surface foundation. Also, this study was conducted to investigate the permanent settlement of a shallow square foundation in improving the cyclic load-settlement characteristics of reinforced sand deposits by conducting a series of laboratory model tests. Use of geogrids provides an economical and time efficient method for improving load-settlement and strength characteristics of weak soils. Especially the geogrid reinforced soil will be necessary in the case of foundation supporting machines, embankments for railroads, and foundations of structures in earthquake-prone areas. Finally, the test results indicate that the use of geogrid reinforcement in sand subgrades improves their performance under dynamic loads which shows promise for future work.

  • PDF

Reinforcement and Arching Effect of Geogrid-reinforced and Pile-supported Embankments (지오그리드와 말뚝으로 보강된 성토지반의 보강 및 아칭효과 연구)

  • Oh Young-In;Shin Eun-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.5-16
    • /
    • 2005
  • Geosynthetic-reinforced and pile-supported embankments have been increasingly used and researched around the world. The inclusion of one or multiple geosynthetic reinforcements over the pile is intended to enhance the efficiency of load transfer from soft ground to piles, to reduce total and differential settlement and increase global or local stability. In this paper, the reinforcement effectiveness and arching effect of the geogrid-reinforced and pile-supported embankments have been studied in terms of field model tests and numerical analysis with varying the space between piles and reinforcement. 2-dimensional numerical analysis has been conducted using the FLAC (Fast Lagrangian Analysis of Continua) program. And load transfer mechanisms between soil-piles-geogrid were investigated. The mechanisms of load transfer can be considered as a combination of embankment soil arching, tension geogrid, and stress concentration due to the stiffness difference between pile and soft ground. Based on the field model test and numerical analysis results, it was found that the geosynthetic reinforcement slightly interferes with soil arching, and helps reduce differential settlement of the soft ground. Also. at the D/b=3 (D: spacing of pile cap, b: diameter of pile), the total settlement is reduced by about $40\%$ compared to that without reinforcement. For $D/b{\ge}6$, the effectiveness of geogrid reinforcement in reducing settlement is negligible.

Evaluation of the Relationship between Geogrid Rib Size and Particle Size Distribution of Ballast Materials using Discrete Element Method (개별요소해석법을 이용한 지오그리드 격자 크기와 도상자갈재료 입도분포 상관관계 평가)

  • Pi, Ji-Hyun;Oh, Jeongho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.143-149
    • /
    • 2016
  • This study evaluated the shear behavior of geogrid reinforced ballast material using a large scale direct shear test and discrete element method (DEM) based on PFC 3D program. The direct shear test was conducted on ballast materials that have different particle size distributions. Whereas the test results revealed that the shear strength generally increased with the larger particle size of ballast material without geogrid reinforcement, the shear behavior of ballast material was found to change pertaining to the relationship between particle size distribution and geogrid rib size. Generally, it is deemed the effectiveness of reinforcement can be achieved when the rib size is two times greater than average particle size. A numerical analysis based on DEM was conducted to verify the test results. The geogrid modeling was successfully completed by calibration process along with sensitivity analysis to have actual tensile strength provided by manufacturer. With a given geogrid model, the parametric evaluation was further carried out to examine the interactive behavior between geogrid and ballast material. Consequently, it was found that the effectiveness zone of geogrid reinforcement generated within a specific depth.

Stability Evaluation of Reinforced Subgrade with Short Geogrid for Railroad During Construction (짧은 보강재를 사용한 철도보강노반의 시공 중 안정성 평가)

  • Kim, Dae Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.11-20
    • /
    • 2014
  • The behaviors and stability of reinforced subgrade with short geogrid were examined and evaluated during construction. First of all, analytical approach for the minimum length of geogrid was performed to guarantee stability during construction loading state. Secondly, the economic aspects for reinforced subgrade were compared with between domestic standards applying with 0.7 H reinforcement length and new way to mix short and long reinforcement. Full scale railroad subgrade was constructed with the size of 5 m high, 6m wide, and 20m long to verify the stability of the subgrade with the length of 0.3 H, 0.35 H, 0.4 H reinforcement. Total 51 sensors were installed to measure settlement, bulging, and the change of stress of the subgrade. It is concluded that the reinforced subgrade with short(0.35H, 35% of height) geogrid had stability within allowable level of deformation and stress increment during construction.