• Title/Summary/Keyword: geographical information system

Search Result 596, Processing Time 0.026 seconds

Computation of geographic variables for air pollution prediction models in South Korea

  • Eum, Youngseob;Song, Insang;Kim, Hwan-Cheol;Leem, Jong-Han;Kim, Sun-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.10.1-10.14
    • /
    • 2015
  • Recent cohort studies have relied on exposure prediction models to estimate individual-level air pollution concentrations because individual air pollution measurements are not available for cohort locations. For such prediction models, geographic variables related to pollution sources are important inputs. We demonstrated the computation process of geographic variables mostly recorded in 2010 at regulatory air pollution monitoring sites in South Korea. On the basis of previous studies, we finalized a list of 313 geographic variables related to air pollution sources in eight categories including traffic, demographic characteristics, land use, transportation facilities, physical geography, emissions, vegetation, and altitude. We then obtained data from different sources such as the Statistics Geographic Information Service and Korean Transport Database. After integrating all available data to a single database by matching coordinate systems and converting non-spatial data to spatial data, we computed geographic variables at 294 regulatory monitoring sites in South Korea. The data integration and variable computation were performed by using ArcGIS version 10.2 (ESRI Inc., Redlands, CA, USA). For traffic, we computed the distances to the nearest roads and the sums of road lengths within different sizes of circular buffers. In addition, we calculated the numbers of residents, households, housing buildings, companies, and employees within the buffers. The percentages of areas for different types of land use compared to total areas were calculated within the buffers. For transportation facilities and physical geography, we computed the distances to the closest public transportation depots and the boundary lines. The vegetation index and altitude were estimated at a given location by using satellite data. The summary statistics of geographic variables in Seoul across monitoring sites showed different patterns between urban background and urban roadside sites. This study provided practical knowledge on the computation process of geographic variables in South Korea, which will improve air pollution prediction models and contribute to subsequent health analyses.

Zoning Hydrologic Units for Geospatial Climatology in North Korea (북한지역의 소기후 추정을 위한 수문단위 설정)

  • Kim, Jin-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.20-27
    • /
    • 2011
  • High-definition, geo-referenced digital climate maps can be produced by applying watershed-specific modules to adjust synoptic observations for local effects including cold air drainage. Since there is no information available on North Korean watersheds, existing geospatial technology for digital climate mapping cannot be transferred to North Korea. We applied a watershed extraction algorithm based on ArcHydro to the North Korean portion of ASTER GDEM and utilized geographical information on major rivers and mountains to adjust the products. Proposed hydrologic zoning system for North Korean watersheds consists of 21 river basins, 93 stream basins and 885 catchments. Combined with the existing 840 South Korean hydrologic units, we now have a complete set of 1,725 catchments which may serve a framework for digital climate modeling across whole land area of the Korean Peninsula.

Use of a Drone for Mapping and Time Series Image Acquisition of Tidal Zones (드론을 활용한 갯벌 지형 및 시계열 정보의 획득)

  • Oh, Jaehong;Kim, Duk-jin;Lee, Hyoseong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • The mud flat in Korea is the geographical feature generated from the sediment of rivers of Korea and China and it is the important topography for pollution purification and fishing industry. The mud flat is difficult to access such that it requires the aerial survey for the high-resolution spatial information of the area. In this study we used drones instead of the conventional aerial and remote sensing approaches which have shortcomings of costs and revisit times. We carried out GPS-based control point survey, temporal image acquisition using drones, bundle adjustment, stereo image processing for DSM and ortho photo generation, followed by co-registration between the spatio-temporal information.

Geographical Information System for Nuclear Disaster Prevention (원자력방재를 위한 지리정보시스템)

  • Lee, Gwang-Pyo;Lee, Yun;Kim, In-Hyeon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2007.10a
    • /
    • pp.169-175
    • /
    • 2007
  • 고리, 월성, 울진, 영광 등4개 원전부지와 하나로 연구용 원자로 부지에 대해 방사성물질의 대기 중 누출사고 발생 시 대축척 전자지도와 연계한 사고정보 파악, 예상피해분석, 방재시설 및 소개정보 활용 등을 통해 중앙정부 및 지방자치단체가 방사능 물질 피해지역관리 및 신속하고 효율적인 주민대응조치 수립을 위한 의사 결정 지원할 수 있는 방사능방재 지리정보시스템 구축이 필요하다. 본 연구에서는 고리, 월성, 울진, 영광, 대전지역의 원자력 발전소 및 연구용 원자로 반경 40km이내 지역의 행정경계, 도로, 등고, 수계, 건물 등의 일반지형지물정보와, 비상계획구역 내 마을의 상세정보, 집결지, 대피소, 교통통제소, 환경방사능감시기, TLD등의 방재시설물 위치 및 관련 상세정보, 관공서, 경찰서, 소방서, 보건소, 학교, 병원 등의 방재관련 지형지물 위치 및 관련 상세정보, 원전부지 내 인구분포, 보유 차량 분포, 농작물 재배 현황, 축산물 재배현황 등의 방재관련 사회통계정보를 포함하는 공간 및 속성 데이터베이스는 구축하였다. 이를 기반으로 방사선 피폭영향 평가시스템(FADAS)의 예상평가결과를 전자지도 상에 표출하고, 이에 근거한 예상피해를 분석하며, 소개단계 대상 마을 검색 및 바람장 분석을 활용한 소개경로 제시 등을 통해 주민보호조치 의사결정을 지원하며, 사고대응 및 소개현황 정보를 관리하는 웹 기반의 원자력방재 지리정보시스템을 확대 개발하였다. 방재시설물 및 방재관련 지형지물, 방재관련 사회통계자료의 검색기능 및 실시간 원전 바람장 정보조회, 실시간 ERMS 수집정보 조회, 수치예보 정보 조회, 온라인DB관리 등의 확대 구현을 통해 사고대응조치 및 피해분석업무를 지원하였다. 본 연구를 통한 원자력방재 지리정보시스템 완성을 통해 방사능 비상시 중앙본부와 지역본부 및 유관기관 간에 지리정보와 연계한 정확한 사고정보 및 방재정보의 신속한 공유를 제공하고, 적절한 비상대응조치 의사결정 및 주민보조조치 수행을 지원하여 효율적인 사고지역 관리 및 인적 물적 자원의 피해를 최소화하는데 기여할 것으로 기대된다.

  • PDF

Analysis of Prediction Models for DTV Field Strength in Domestic Rural Propagation Environment (국내 Rural 전파환경에서의 DTV 전계강도 예측모델 분석)

  • Kang, Young-Heung;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.638-645
    • /
    • 2013
  • For the efficient use of the insufficient frequency resources, a precise prediction of field strength based on various propagation environments should be set up to design of radio stations with reliable transmit power and service coverage. Therefore, many countries have tried to secure the propagation models suitable for their each geographical environments, and also, some models like BCAST were developed by Korea, but these models give the different results compared to measured values. In this paper, based on the measurements of DTV broadcasting services in domestic rural area, analysis and comparison of ITU-R P.1546 and BCAST models provide errors between measured and predicted values, and some points for improving SMI system has been proposed. As a result, P.1546 model provides the valid predicted data similar to measured data, but BCAST model has some problems of large deviation and higher prediction to measured data. In future, these problems and fading loss due to a forest or group of trees, and reflection loss due to a lake or sea need to be studied carefully.

Technology Tree and Domestic Research Status of Satellite Remote-Sensing of the Earth (위성자료를 응용한 지구관측 분야의 기술분류와 국내 연구동향 파악)

  • 김승범;김문규;안명환;김계현;사공호상
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.253-273
    • /
    • 2001
  • In this review article, we produce a technology tree in the earth observation by remote sensing, which is the Level I technology in the tree. To define Level II technologies, we create a two-dimensional matrix of technologies viewed from methodology and application viewpoints. Consequently the following fields are selected: reception-archiving, atmosphere, ocean, land, GIS, and common technology. For each Level II technology, we extract half a dozen Level III and about 20-30 Level IV technologies. For each Level IV technology, we review the status of domestic research and the approaches for acquiring deficient technology in Korea. Also we survey foreign institutions specializing in the deficient technologies and the time when the deficient technologies are needed. Furthermore we assign priority technologies from the viewpoints of public need and economic benefits. The information given in this article would help understand and collaborate among different disciplines, be a useful guide to a beginner to remote sensing, and assist policy making.

Regional-Scale Evaluation of Groundwater Susceptibility to Nitrate Contamination Based on Soil Survey Information (토양정보를 이용한 광역 지하수의 질산태 질소 오염 민감도 분포 분석)

  • Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • Susceptibility assessment of groundwater contamination is a useful tool for many aspects of regional and local groundwater resources planning and management. It can be used to direct regulatory, monitoring, educational, and policy-making efforts to highly vulnerable areas. In this study, a semi process-based was proposed to evaluate relative susceptibilities to groundwater contamination by nitrate on a regional scale. Numerical simulation based on data from each soil series was done to model water flow within soil profiles that were related to groundwater contamination by nitrate. Relative vulnerability indices for each soil series were produced by manipulation of amount of leaching flux, amount of average water storage in a soil profile, and amount of average water storage change. These indices were designed to convey the trend of leaching flux and to maximize spatial resolution. The resulting vulnerability distribution map was used to locate highly vulnerable sites easily with an appropriate grouping the indices, and was then compared with those from groundwater nitrate concentrations monitored. An excellent agreement was obtained across nitrate concentrations from the highly vulnerable regions and those from the low to stable regions.

Classification and Analysis of Korea Coastal Flooding Using Machine Learning Algorithm (기계학습 알고리즘에 기반한 국내 해수범람 유형 분류 및 분석)

  • CHO, KEON HEE;EOM, DAE YONG;PARK, JEONG SIK;LEE, BANG HEE;CHOI, WON JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • In this study, Information for the case of seawater flooding and observation data over a period of 10 years (2009~2018) was collected. Using machine learning algorithms, the characteristics of the types of seawater flooding and observations by type were classified. Information for the case of seawater flooding was collected from the reports of the Korea Hydrographic and Oceanographic Agency (KHOA) and the Korea Land and Geospatial Informatics Corporation. Observation data for ocean and meteorological were collected from the KHOA and the Korea Meteorological Agency (KMA). The classification of seawater flooding incidence types is largely categorized into four types, and into 5 development types through combination of 4 types. These types were able to distinguish the types of seawater flooding according to the marine weather environment. The main characteristics of each was classified into the following groups: tidal movement, low pressure system, strong wind, and typhoon. Besides, in consideration of the geographical characteristics of the ocean, the thresholds of ocean factors for seawater flooding by region and type were derived.

The Analysis of Characteristics of Swell in Korea using the Ubiquitous Measurement System (유비쿼터스 관측시스템을 이용한 국내 너울의 특성규명에 관한 연구)

  • Jang, Bok-Jin;Yeo, Woon-Kwang;Lee, Jong-Kook;Park, Kwang-Soon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.785-795
    • /
    • 2008
  • The swell is a major cause of interruption for the activity in a port and the ship navigation in coastal waters, coastal geographical changes, and the disaster with a loss of lives. However, many researches about the observation and the prediction of swells have not been conducted actively due to the difficulties to collect and synthesize the massive amount of long term field data for waves and meteorological information. In this study, the internet-based realtime monitoring system(Fieldbox) was developed to collect the wave data. The characteristics and main components of swells occurred in Korea were analyzed using wave data observed through the Fieldbox and the meteorological data collected by the KMA(Korea Meteorological Administration) and NASA(National Aeronautics and Space Administration). The characteristics of the swell generation patterns were analyzed using the monthly data of the Kwangan Tower between 2004 and 2006 to estimate the specific features such as sources and locations of swells generated in Korea.

Validations of Typhoon Intensity Guidance Models in the Western North Pacific (북서태평양 태풍 강도 가이던스 모델 성능평가)

  • Oh, You-Jung;Moon, Il-Ju;Kim, Sung-Hun;Lee, Woojeong;Kang, KiRyong
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Eleven Tropical Cyclone (TC) intensity guidance models in the western North Pacific have been validated over 2008~2014 based on various analysis methods according to the lead time of forecast, year, month, intensity, rapid intensity change, track, and geographical area with an additional focus on TCs that influenced the Korean peninsula. From the evaluation using mean absolute error and correlation coefficients for maximum wind speed forecasts up to 72 h, we found that the Hurricane Weather Research and Forecasting model (HWRF) outperforms all others overall although the Global Forecast System (GFS), the Typhoon Ensemble Prediction System of Japan Meteorological Agency (TEPS), and the Korean version of Weather and Weather Research and Forecasting model (KWRF) also shows a good performance in some lead times of forecast. In particular, HWRF shows the highest performance in predicting the intensity of strong TCs above Category 3, which may be attributed to its highest spatial resolution (~3 km). The Navy Operational Global Prediction Model (NOGAPS) and GFS were the most improved model during 2008~2014. For initial intensity error, two Japanese models, Japan Meteorological Agency Global Spectral Model (JGSM) and TEPS, had the smallest error. In track forecast, the European Centre for Medium-Range Weather Forecasts (ECMWF) and recent GFS model outperformed others. The present results has significant implications for providing basic information for operational forecasters as well as developing ensemble or consensus prediction systems.