• Title/Summary/Keyword: geochemical mobility

Search Result 34, Processing Time 0.019 seconds

The Effects of CO2 Released from Deep Geological Formations on the Dissolution Process of Galena in Shallow Subsurface Environments (지중저장 이산화탄소의 누출이 천부환경에서 방연석의 용해 과정에 미치는 영향)

  • Nam, Jieun;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.19-27
    • /
    • 2015
  • If $CO_2$ stored for geological sequestration escapes from deep formations and is introduced to shallow aquifers, it dissolves into groundwater, creates acidic environments, and enhance mineral dissolution from rocks and soils. Among these minerals, dissolution and spread of hazardous trace metals can cause environmental problems with detrimental impacts on groundwater quality. This study aims to investigate geochemical effects of $CO_2$ in groundwater on dissolution of galena, the main mineral controlling the mobility of lead. A series of batch experiments are performed with granulated galena in $CO_2$ solutions under various experimental conditions for $CO_2$ concentration and reaction temperature. Results show that dissolution of galena is significantly enhanced under acidic environments so that both of equilibrium concentrations and dissolution rates of lead increase. For thermodynamic analysis on galena dissolution, the apparent rate constants and the activation energy for galena dissolution are calculated by applying rate law to experimental results. The apparent rate constants are $6.71{\times}10^{-8}mol/l{\cdot}sec$ at $15^{\circ}C$, $1.77{\times}10^{-7}mol/l{\cdot}sec$ at $25^{\circ}C$, $3.97{\times}10^{-7}mol/l{\cdot}sec$ at $35^{\circ}C$ and the activation energy is 63.68 kJ/mol. The galena dissolution is suggested to be a chemically controlled surface reaction, and the rate determining step is the dissociation of Pb-S bond of surface complex.

Characteristics of Geochemical Behaviors of Trace Metals in Drainage from Abandoned Sechang Mine (세창 폐금속광산 수계에서 미량원소의 지구화학적 거동특성 규명)

  • Kang Min-Ju;Lee Pyeong-Koo;Youm Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.213-227
    • /
    • 2006
  • The geochemical evolution of mine drainage and leachate from waste rock dumps and stream water in Pb-As-rich abandoned Sechang mine area was investigated to elucidate mechanisms of trace metals. Total and sequential extractions were applied to estimate the distribution of trace metals in constituent phases of the waste rocks and to assess the mobility of trace metals according to physicochemical conditions. These discharged waters varied largely in chemical composition both spatially and temporally, and included cases with significant]y low pH (in the range 2.1-3.3), and extremely sulphate (up to 661 mg/l and metal contents (e.g. up to 169 mg/l for Zn, 27 mg/l for As, 3.97 mg/l for Pb, 2.99 mg/l for Cu, and 1.88 mg/l for Cd). Arsenic and heavy metal concentrations at the down-stream of Sechang mine have been decreased nearly to the background level in downstream sites (sites 8 and 16) without any artificial treatments. The oxidation of Fe-sulfides and the subsequent hydrolysis, of Fe(II), with precipitation of poorly crystallized minerals, constituted an efficient mechanism of natural attenuation which reduces considerably the transference of trace metals (i.e. Fe and As) to rivers. The dilution of drainage by mixing with pristine waters provoked an additional decrease of trace metal concentrations and a progressive pH increase. On the other hand, the most soluble cations (i.e. Zn) remained significantly as dissolved solutes until the pH was raised to approximately neutral values. With respect to ecotoxicity, it is likely that the Zn pollution is of particular concern in Sechang mine area. This was confirmed by the sequential extraction experiment, where Zn in wet waste-rock samples occurred predominantly in the exchangeable fraction (65-89% of total), while Pb was the highest in the reducible and carbonate fractions, and Cd, Cu and As in the residual fraction. Pb concentration in the readily available exchangeable fraction (34-48% of total) was dominated for dried waste rock samples. Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreased in the order of Zn>Pb>Cd>As=Cu.

Geochemical Characteristics and Trace Metal Speciation of Soils in Major Source Area of Asian Dust (주요 황사발원지 토양의 지구화학적 특성 및 미량원소 존재형태 연구)

  • Lee, Pyeong-Koo;Youm, Seung-Jun;An, Gi-O
    • Economic and Environmental Geology
    • /
    • v.45 no.1
    • /
    • pp.9-21
    • /
    • 2012
  • In this study, we investigated the chemical characteristics of soils collected from the several deserts and loess in China known as the typical source areas of Asian dust (the Taklamakan desert, the Alashan desert, the Ordos desert and the Loess Plateau). Based on our analysis, we examined the possibility of adverse effects on environments and human health. In each desert and loess, major elemental compositions of soils did not show large variations, implying that the long-periodic mixing of soils in each area made their chemical compositions homogeneous. Minor elements of soils in each desert and loess showed more complicated patterns with strong correlations each other (e.g., Cr, Cu, As, Co, Ni, V, Y, Sc, Sn, Pb, Zn, Cd, Cs, Li, Th, U). These results thus enable us to discriminate the soil of the Loess Plateau from those of the other deserts in China. The results of sequential extraction experiments for soils showed that the chemical speciation of Fe was dominant in residual fraction (>85%) in all deserts and loess, but the fractions of Mn and Ca chemical speciations were very different in each area. In the case of Mn, the fraction of amorphous Fe-Mn hydroxides (55.4%) in the Central Loess Plateau and the carbonate fraction (33.8%) in Taklamakan desert were higher as much as 2 to 5 times than other deserts. The chemical speciations of Ca are dominant in carbonate fraction in Taklamakan (75.9%) and Alashan (50.5%) deserts, but carbonate fractions of Ca in the Loess Plateau and Ordos deserts were low (6.6% and 2.1%, respectively). According to the mobility of trace elements inferred from the results of sequential extraction procedure, we could classify them into five groups, and the mobility of Cd, Pb and Cu are more than 87%, 33% and 30%, respectively. Therefore, Cd, Pb and Cu in soils of deserts and loess could be easily dissolved when interacted with surface water. As such, they could give adverse effects on surficial environments and human health.

Characteristics of Elements Extraction in Waste Rocks on the Abandoned Jangpoong Cn Mine (장풍 동광산 폐광석 내 원소의 용출 특성)

  • Lee, In-Gyeong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.695-708
    • /
    • 2008
  • In order to evaluate the geochemical behaviors of elements with waste rocks in the abandoned Jangpoong Cu mine area, total concentration analysis and leaching experiments were performed. The content of elements within waste rocks compared with background values decreased in order of As>>Cu>Pb>Cd>Co. Leaching experiments were carried out at various extraction environments, considering the acid rain ($0.00001{\sim}0.001N\;HNO_3$) and the acid mine drainage ($0.001{\sim}0.1N$ HNO3). After 24 hours of reaction with different acidic solution, the leaching characteristics of waste rocks were classified into three types according to final pH of leaching solution. Type I refers to the case that the final pH of leaching solution was lower than that of the reaction solution due to the dissolution of acidic minerals from rocks, while type 2 and 3 refer to the case that the final pH maintained higher than that of the reaction solution. Theses types include in acid buffering minerals such as clay minerals and carbonate minerals. The leaching characteristics of the elements after the reaction could be categorized into As-Co-Fe, Cu-Mn-Cd-Zn, and Pb. As-Co-Fe started to get leached under 2.5 of pH regardless of changes in the final pH, and Cu-Mn-Cd-Zn showed different initial leaching pH according to the types of final pH changes. Based on the pH value where leaching started regardless of leaching concentration, the relative mobility of each element was in the order of Mn Zn>Cd>Cu>>Fe Co>As>Pb. Thus, more higher mobility elements(Zn, Mn and Cu) were leached by reacting with acid rain water. Acid mine drainage may result in distributions of elements having relatively less mobility(As, Fe, Co and Pb).

Environmental Contamination and Bioavailability Assessment of Heavy Metals in the Vicinity of the Dogok Au-Ag-Cu Mine (도곡(Au-Ag-Cu)광산 주변지역의 중금속 원소들의 환경오염특성 및 생체흡수도 평가)

  • Lee Sung-Eun;Lee Jin-soo;Chon Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.135-142
    • /
    • 2005
  • In order to investigate the contamination level and seasonal variation of heavy metals and evaluate the bioavailability of toxic elements, environmental geochemical survey was undertaken at the Dogok Au-Ag-Cu mine area. The main pollution sources in the area were suggested as tailings, mine waste materials and mine water. Elevated levels of $140{\cal}mg/{\cal}kg{\;}As,{\;}107{\cal}mg/{\cal}kg{\;}Cd,{\;} 3017{\cal}mg/{\cal}kg{\;}Cu,{\;}12926{\cal}mg/{\cal}kg{\;}Pb,{\;}9094{\cal}mg/{\cal}kg$ Zn(before rainy season) were found in mine tailings. Concentrations of heavy metals in farmland soils exceeded normal level in nature soil (Bowen, 1979). The highest level of heavy metals was found in water samples near the mine tailing dumps regarded as a main pollution source of toxic elements in the area. These concentrations decreased to downstream due to the effect of dilution. From the results of sequential extraction analyses for tailings and soils, non-residual forms of heavy metals were found, which indicate the contamination to be progressing by continuing weathering and oxidation. Cadmium and Zn would be of the highest mobility in all samples. The bioavailability of Cd, Cu, Zn and As using SBET analysis from paddy soils was $53.3{\%},{\;}46.5{\%},{\;}41.0{\%}$ and $37.0\%$, respectively. The farmland soil sample(S3) showed the highest total concentration and bioavailability of heavy metals.

Contamination and Geochemical Speciation of Heavy Metals in Middle Cover Soils and Clay Liner from the Kumheung Landfill, Gongju City (공주 금흥매립지의 중간복토재 및 차수재(논토양)의 중금속 오염과 존재형태 연구)

  • 이평구;박성원;염승준
    • Economic and Environmental Geology
    • /
    • v.34 no.3
    • /
    • pp.283-299
    • /
    • 2001
  • The middle cover soils and clay liners collected from the Kumheung landfill in Gongiu City were analysed for As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, Ti and Zn concentrations using 0.] N HCl digestion and total/sequential extraction experiments followed by ICP-AES determination. The uncontaminated soil and sediment samples were also analyzed for the comparison. The results of sequential extraction showed that Cu was dominant in the oxidizable fraction, and As, Ni, Sr, Ba, and Mn were in the exchangeable fraction. Zinc and Mn occurred mostly in association with reducible, residual and carbonate fractions. Most of Cd and Pb were bound to the reducible and oxidizable fractions. The main carrier of Co, Cr, Fe and 11 was the residual fraction and another important carrier was the reducible fraction. The percentage of the metals of organically-bound form in the middle cover soils and clay liner was in the order of Cu(48%) > Ti(42%) > Pb(27%) > As(25%) > Cd(20%). As deduced from sequential extraction analysis, potential order of metal mobility in the middle cover soils and clay liner from the landfill was proposed: Cd > Sr > As > Ni > Mn > Ba > Cu > Pb > Zn » Co > 11 > Fe > Cr. Based on the 'geoaccumulation index' and the 'enrichment factor' normalized to A], the level of contamination of Cu, Ni and C1' was significant in the samples from Kumheung landfill and surrounding farmland. Their enrichments were attributed partly to anthropogenic pollutions.

  • PDF

The Distribution Characteristics and Contamination of Heavy Metals in Soil from Dalcheon Mine (달천광산 토양 내 중금속의 존재형태 및 오염도)

  • Suh, Ji-Won;Yoon, Hye-On;Jeong, Chan-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • The geochemical partitioning of arsenic in contaminated soils from a of wet land and tailing of the abandoned mine is examined. Chemical analysis and sequential extraction method by ultrasound-sonication extraction are applied to investigate the mobility and chemical existence conditions of arsenic as well as heavy metals. The results of this study showed that heavy metals concentration of tailings showed as a following order: Fe > As > Cu > Pb > Cr. The highest metal concentration was recognized in samples less than $63\;{\mu}m$ fraction in their particle sizes. Exchangeable and carbonate fractions in soil samples showed following Cu > As > Pb > Fe > Cr for tailings, and Fe > Pb > Cu > As > Cr for reservoir soils, respectively. Arsenic was bound as exchangeable fraction in tailings and its concentration appeared higher than those of the other metals. Thus, As can be easily dispersed into soil and water environments. The obtained results can be used to design soil remediation plan in the study area and require further detailed study to investigate severe environmental pollution of surface water as well as rivers with respect to heavy metals in terms of speciation analysis of toxic elements such as As and Cr.

Preliminary Study on Arsenic Speciation Changes Induced by Biodegradation of Organic Pollutants in the Soil Contaminated with Mixed Wastes (유기물분해에 따른 유류${\cdot}$중금속 복합오염토양내 비소화학종 변화의 기초연구)

  • 이상훈;천찬란;심지애
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.349-356
    • /
    • 2003
  • As industrial activities are growing, pollutants found in the contaminated land are getting diverse. Some contaminated areas are subject to mixed wastes containing both organic and inorganic wastes such as hydrocarbon and heavy metals. This study concerns with the influence of the degradation of organic pollutants on the coexisting heavy metals, expecially for As. As mainly exists as two different oxidation state; As(III) and As(V) and the conversion between the two chemical forms may be induced by organic degradation in the soil contaminated by mixed wastes. We operated microcosm in an anaerobic chamber for 60 days, using sandy loam. The soils in the microcosm are artificially contaminated both by tetradecane and As, with different combination of As(III) and As(V); As(III):As(V) 1:1, As(III) only and As(V) only. Although not systematic, ratio of As(III)/As(Total) increase slightly at the later stage of experiment. Considering complicated geochemical reactions involving oxidation/reduction of organic materials, Mn/Fe oxides and As, the findings in the study seem to indicate the degradation of the organics is connected with the As speciation. That is to say, the As(V) can be reduced to As(III) either by direct or indirect influence induced by the organic degradation. Although Fe and Mn are good oxidising agent for the oxidation of As(III) to As(V), organic degradation may have suppressed reductive dissolution of the Fe and Mn oxides, causing the organic pollutants to retard the oxidation of As(III) to As(V) until the organic degradation ceases. The possible influence of organic degradation on the As speciation implies that the As in mixed wastes may be have elevated toxicity and mobility by partial conversion from As(V) to As(III).

Sequential Fractionation of Heavy metals from Mine Tailings and Two Series of Agricultural Soils (광미장과 두개의 농업토양통 토양으로 부터의 중금속의 연속 분획)

  • Chung, Doug-Young;Lee, Do-Kyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.375-382
    • /
    • 1999
  • In order to investigate the contamination characteristics of the heavy metals in the mine tailings of abandoned gold mine and its surrounding agricultural soils, a sequential extraction procedure of increasing reactivity in the dissolution processes of the heavy metals(Cd, Cu, and Pb) which were associated with solid and/or solution phase in soils was attempted to partition into six particulate fractions : exchangeable, bound to carbonate, bound to Fe-Mn oxides, bound to organic matter, residual, and soluble. Among indigenous heavy metals in the mine tailings, Pb was the most abundant and Cu and Cd were followed by. Fractionation result of Pb obtained from the triplicate samples of the mine tailings were in the order of Fe-Mn oxide> Carbonate> Residual> Organic> Exchangeable> Soluble, while Wolgok series were Exchangeable > Fe-Mn oxide > Carbonate> Organic> Residual> Soluable. However the other heavy metals studied were not followed this trend. The fractionation results of mine tailing and agricultural soils demonstrated that different geochemical fractions were operationally defined by an extraction sequence that generally followed the order of decreasing solubility. Therefore potential mobility and bioavailability of heavy metals as toxic pollution sources can be evaluated when studying the pollution levels of heavy metals in soils.

  • PDF

Mobility of Transition Metals by Change of Redox Condition in Dump Tailings from the Dukum Mine, Korea (덕음광산 광미의 산화${\cdot}$환원 조건에 따른 전이원소의 이동성)

  • 문용희;문희수;박영석;문지원;송윤구;이종천
    • Economic and Environmental Geology
    • /
    • v.36 no.4
    • /
    • pp.285-293
    • /
    • 2003
  • Tailings of Dukum mine in the vadose and saturated zone were investigated to reveal the mobility of metal elements and the condition of mineralogical solubility according to redox environments throughout the geochemical analysis, thermodynamic modelling, and mineralogical study for solid-samples and water samples(vadose zone; distilled water: tailings=5 : 1 reacted, saturated zone; pore-water extracted). In the vadose zone, sulfide oxidation has generated low-pH(2.72∼6.91) condition and high concentration levels of S $O_4$$^{2-}$(561∼1430mg/L) and other metals(Zn : 0.12∼l57 mg/L, Pb : 0.06∼0.83 mg/L, Cd : 0.06∼l.35 mg/L). Jarosite$(KFe_3(SO_4)_2(OH)_6)$ and gypsum$(CaSO_4{\cdot}2H_2O$) were identified on XRD patterns and thermodynamics modelling. In the saturated zone, concentration of metal ions decreased because pH values were neutral(7.25∼8.10). But Fe and Mn susceptible to redox potential increased by low-pe values(7.40∼3.40) as the depth increased. Rhodochrosite$(MnCO_3)$ identified by XRD and thermodynamics modelling suggested that $Mn^{4+}$ or $Mn^{3+}$ was reduced to $Mn^{2+}$. Along pH conditions, concentrations of dissolved metal ions has been most abundant in vadose zone throughout borehole samples. It was observed that pH had more effect on metal solubilities than redox potential. How-ever, the release of co-precipitated heavy metals following the dissolution of Fe-Mn oxyhydroxides could be the mechanism by which reduced condition affected heavy metal solubility considering the decrease of pe as depth increased in tile saturated zone.