• Title/Summary/Keyword: geochemical distribution

Search Result 164, Processing Time 0.032 seconds

Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea (한국과 중국의 강 퇴적물의 주성분 원소 함량 특성: 황해 니질 퇴적물의 기원지 연구를 위한 잠재적 추적자)

  • Lim, Dhong-Il;Shin, In-Hyun;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.311-323
    • /
    • 2007
  • The Yellow and East China seas received a vast amount of sediment $(>10^9ton/yr)$, which comes mainly from the Changjiang and Huanghe rivers of China and the Korean rivers. However, there are still no direct sedimentological-geochemical indicators, which can distinguish these two end-members (Korean and Chinese river sources) in these seas. The purpose of this study is to provide the potential geochemical-tracers enabling these river materials to be identified within the sediment load of the Yellow and East China seas. The compositions of major elements (Al, Fe, Mg, K, Ca, Na, and Ti) of Chinese and Korean river sediments were analyzed. To minimize the grain-size effect, furthermore, bulk sediments were separated into two groups, silt $(60-20{\mu}m)$ and clay $(<20{\mu}m)$ fractions, and samples of each fraction were analyzed for major and strontium isotope $(^{87}Sr/^{86}Sr)$ compositions. In this study, Fe/Al and Mg/Al ratios in bulk sediment samples, using a new Al-normalization procedure, are suggested as an excellent tool for distinguishing the source of sediments in the Yellow and East China seas. This result is clearly supported by the concentrations of these elements in silt and clay fraction samples. In silt fraction samples, Korean river sediments have much higher $^{87}Sr/^{86}Sr$ ratio $(0.7229{\sim}0.7253)$ than Chinese river sediments $(0.7169{\sim}0.7189)$, which suggests the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the Yellow and East China seas. On the basis of these geochemical tracers, clay fractions of southeastern Yellow Sea mud (SEYSM) patch may be a mixture of two sediments originated from Korea and China. In contrast, the geochemical compositions of silt fractions are very close to that of Korea river sediments, which indicates that the silty sediments of SEYSM are mainly originated from Korean rivers.

금정광산 주변 토양의 중금속 오염현황 및 그 처리 방안

  • 이기철;이승길;한인호;최광호;정덕영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.189-194
    • /
    • 1998
  • Geochemical study was carried out to find out the distribution of metals and cyanide in soil in the vicinity of the abandoned Keum-Jung mine. Chemical analysis showed that content of As in soil around tailings exceeded 15mg/kg, Korean standard of soil contamination in the farm land. That means the contamination of soil by As is due to input of tailings. According to total decomposition of tailings, As was highly concentrated in tailings. However the water in tailings impoundment was changed to acidic and contaminated by metal and sulfate because the tailings in the top of the tailings impoundment had been oxidized. Acid mine drainage contaminated the water course in the vicinity of the paddy soils. The proper measures are required to prevent contamination of the soil and water in the vicinity of the Keum-Jung mine.

  • PDF

Characterization of Groundwater Chemistry and Fluoride in Groundwater Quality Monitoring Network of Korea

  • Han, Jiwon
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.556-570
    • /
    • 2021
  • This study presents the data analysis results of groundwater chemistry and the occurrence of fluoride in groundwater obtained from the groundwater quality monitoring network of Korea. The groundwater data were collected from the National Groundwater Information Center and censored for erratic values and charge balance (±10%). From the geochemical graphs and various ionic ratios, it was observed that the Ca-HCO3 type was predominant in Korean groundwater. In addition, water-rock interaction was identified as a key chemical process controlling groundwater chemistry, while precipitation and evaporation were found to be less important. According to a non-parametric trend test, at p=0.05, the concentration of fluoride in groundwater did not increase significantly and only 4.3% of the total groundwater exceeded the Korean drinking water standard of 1.5 mg/L. However, student t-tests revealed that the fluoride concentrations were closely associated with the lithologies of tuff, granite porphyry, and metamorphic rocks showing distinctively high levels. This study enhances our understanding of groundwater chemical composition and major controlling factors of fluoride occurrence and distribution in Korean groundwater.

A report of three newly recorded benthic foraminiferal species from Korea

  • Somin Lee;Fabrizio Frontalini;Wonchoel Lee
    • Journal of Species Research
    • /
    • v.12 no.1
    • /
    • pp.48-54
    • /
    • 2023
  • Foraminifera are unicellular eukaryotes widely distributed in marine and transitional marine environments. They play important roles in marine food webs and geochemical cycles and have physiological properties like the formation of calcareous tests and nitrogen respiration. Research on species diversity, distribution and endemism are essential in biogeography and biodiversity conservation. Here, we report three unrecorded species of foraminifera (Hemirotalia foraminulosa, Planispirillina denticulogranulata and Oolina brevisolenia) collected from Jeju Island and the South Sea (Korea). Planispirillina denticulogranulata is the second Planispirillina species recorded in Korea, which can be distinguished from congeners by its tubercles on the ventral side and grooves on the spiral suture. Hemirotalia foraminulosa is differentiated from the only congener H. calvifacta by multiple-scattered pits on the umbilicus, and it is the first report of Hemirotalia from Korean water. Oolina brevisolenia has specific bifurcating costae that characterize it from other congeners. This study contributes to documentation of the foraminiferal biodiversity in Korea, moreover, provides an essential basis for the expanded studies on modern foraminifera.

The metallic composition of airborne particles in seven locations of Seoul city, Korea (대기 분진 중 중금속 성분의 공간적 농도분포 특성 비교: 서울시 7개 관측점을 중심으로)

  • Choi, Bae-Jin;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.143-151
    • /
    • 2003
  • In the present study, we made measurements of PM-bound metal concentrations from seven different urbanized locations in Seoul for the period covering March 2001 through May 2002. The measurement data were analyzed to explore the possible influences of spatial factors on metal distribution characteristics. To check for the importance of such aspects on metal distribution characteristics, the measured data were compared between different metals and between different sites by several criteria including (1) coefficient of variation (CV) values; (2) temporal variability; and (3) the abundance of strongly correlated pairs. The overall results of our study indicate strong diversity in the distribution characteristics of different metals. It is found that some metals (like Fe, Mn, and Pb) tend to exhibit strong compatibility among different study sites. However, no such compatibility appears to exist for certain metals like Cu. To account for the importance of spatial factors, complex relationships between source/sink processes and geochemical characteristics of a given metallic component may have to be examined in a systematic manner.

Distribution Pattern, Geochemical Composition, and Provenance of the Huksan Mud Belt Sediments in the Southeastern Yellow Sea (황해 남동부 흑산니질대 퇴적물의 분포, 지화학적 조성 및 퇴적물 기원지)

  • Ha, Hun Jun;Chun, Seung Soo;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.289-302
    • /
    • 2013
  • In order to determine the provenance of the Huksan Mud Belt sediments in the southeastern Yellow Sea, the major and rare earth elements of the same sediments were analyzed. The surface sediments were sampled from top of piston-cores and box-cores taken at 51 sites within the Huksan Mud Belt. With the mean grain size of $5-6{\phi}$, the sediments of the study area are mud-dominated. The spatial distribution patterns show that silt content is high in the northern Mud Belt, whereas clay content increases as it moves toward the southern Mud Belt. Interestingly, the geochemical compositions both of major and rare earth elements have resulted in differences of sediment provenance. Among the major elements, plots of Fe/Al vs. Mg/Al ratios, $Al_2O_3$ vs. MgO ratios, and $Al_2O_3$ vs. $K_2O$ reveal that the Huksan Mud Belt sediments are dominated by the Korean river-derived sediments. However, the characteristics of rare earth elements infer sediments originating from the Chinese rivers. This discrepancy between the above provenances is attributed to the different contributory factors in the content of chemical elements. Considering strong correlation between major elements with grain sizes, the contents of the major elements are thought to be influenced by the grain size. However, there is a weak correlation between rare earth elements and grain sizes. The behaviour of rare earth elements may be controlled by heavy minerals, rather than grain sizes. Further study requires to solve the discrepancy arose from the difference in applied chemical tracers.

Evaluation of Saltwater Intrusion to Coastal Aquifer by Using Probability Statistics (확률통계기법을 이용한 해안지역 대수층의 염수침입 평가)

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Kim, Kwang-Koo;Lee, Chung-Mo;Jeon, Hang-Tak;Ok, Soon-Il
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.371-382
    • /
    • 2016
  • Saltwater intrusion in coastal regions can be detected by using numerous geochemical constituents in groundwater. However, insufficient numbers of groundwater data can often make us difficult to interpret saltwater intrusion. Probability statistics technique enables statistical prediction using a limited numbers of water quality data for a wider range and can make to effectively evaluate saltwater intrusion through a characterized distribution of probability. This study evaluated saltwater intrusion by applying probability statistics to the chemical constituents in groundwater, coastal discharge, and stream water in the coastal areas of Busan City. By the result of the study, it is proven that Na+, Mg2+, K+, SO42−, and Cl, abundantly contained in seawater, are valuable indicators for evaluating saltwater intrusion. On the other hand, it is judged that Si4+, Fe2+, NO3, and PO43−, showing similar probability distribution in groundwater, coastal discharge, and stream water, are not appropriate indicators for the detection of saltwater intrusion.

Distribution of heavy metals in soils around the Keum-Jung mine and remediation (금정광산 주변 토양의 중금속 오염현황 및 그 처리 방안)

  • 이기철;이승길;한인호;최광호;정덕영
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.25-34
    • /
    • 1999
  • This geochemical study was carried out to find out the distribution of metals and cyanide in the soils around the Keum-Jung abandoned mine. Chemical analysis showed that extractable As contents in the soils near the mine exceeded 15mg/kg, Korean standard of soil contamination for farm land. The Results suggests that As contamination is due to input of tailings in the soils. According to total decomposition of tailings, As was highly concentrated in tailings. The water in a tailings impoundment was changed to acidic and contaminated by metals and sulfate which were released through oxidation of impoundment. Acid mine drainage from the tailings impoundment distribution channels directed to the paddy soils. The proper measures are required to prevent contamination of the soil and water in the vicinity of the Keum-Jung mine.

  • PDF

Radon distribution in geochemical environment and controlling factors in Radon concentration(Case study) (지구화학환경에서의 라돈농도분포와 라돈농도의 지배요인(사례연구))

  • 전효택
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.189-214
    • /
    • 2000
  • Three study areas of Kwanak campus(Seoul National University), Gapyung and Boeun were selected and classified according to bedrock types in order to investigate soil-gas radon concentrations. Several soil-gas samples showed relatively high radon concentrations in the residual soils which derived from granite bedrock. It also showed that water content of soil and the degree of radioactivity disequilibrium was a secondary factor governing radon emanation and distribution of radon radioactivity. The results of radon concentrations and working levels for forty rooms in Kwanak campus, Seoul National University, showed that indoor basement rooms under poor ventilation condition can be classified as high radon risk zone having more than EPA guideline(4 pCi/L). Some results of section analysis which was surveyed in the fault zone of Kyungju and Gapyung area confirmed the existence of fault-associated radon anomalies with a meaning of radon risk zone.

  • PDF

REVIEW AND COMPILATION OF DATA ON RADIONUCLIDE MIGRATION AND RETARDATION FOR THE PERFORMANCE ASSESSMENT OF A HLW REPOSITORY IN KOREA

  • Baik, Min-Hoon;Lee, Seung-Yeop;Lee, Jae-Kwang;Kim, Seung-Soo;Park, Chung-Kyun;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.593-606
    • /
    • 2008
  • In this study, data on radionuclide migration and retardation processes in the engineered and natural barriers of High-Level Radioactive Waste (HLW) repository have been reviewed and compiled for use in the performance assessment of a HLW disposal system in Korea. The status of the database on radionuclide migration and retardation that is being developed in Korea is investigated and summarized in this study. The solubilities of major actinides such as D, Th, Am, Np, and Pu both in Korean bentonite porewater and in deep Korean groundwater are calculated by using the geochemical code PHREEQC (Ver. 2.0) based on the KAERI-TDB(Korea Atomic Energy Research Institute-Thermochemical Database), which is under development. Databases for the diffusion coefficients ($D^b_e$ values) and distribution coefficients ($K^b_d$ values) of some radionuclides in the compacted Korean Ca-bentonite are developed based upon domestic experimental results. Databases for the rock matrix diffusion coefficients ($D^r_e$ values) and distribution coefficients ($K^r_d$ values) of some radionuclides for Korean granite rock and deep groundwater are also developed based upon domestic experimental results. Finally, data related to colloids such as the characteristics of natural groundwater colloids and the pseudo-colloid formation constants ($K_{pc}$ values) are provided for the consideration of colloid effects in the performance assessment.