• Title/Summary/Keyword: geochemical composition

Search Result 191, Processing Time 0.027 seconds

Variation of Chemical Composition and Relative migration of major Elements in the Weathering of Jeon-Ju granite and Rang-San granite (전북(全北) 전주지역(全州地域) 화강암(花崗岩) 및 낭산지역(郎山地域) 화강암(花崗岩)의 풍화(風化)에 따른 화학조성(化學組成)의 변화(變化)와 주요원소(主要元素)의 상대적이동(相對的移動))

  • Nam, Ki Sang
    • Economic and Environmental Geology
    • /
    • v.8 no.4
    • /
    • pp.211-221
    • /
    • 1975
  • Weathering of granites has a geochemical role of great significance, because of their abundance and because of chemical instability near the surface of the earth, which is more pronounced than in most other rocks. On the other hand the granites are tectonically fragile and "react" to deformation with marked facility, giving rise to a whole gamut of deformed rocks. Therefore, the writer has studied on the weathering of granitic rocks at of Iri city and Jeonju city Jeollabukdo, Korea, The fresh and weathered rocks were used as material for the investigation. The results obtained by chemical analysis and observation are as follows. 1) The order of mobility in major elements was Ca, Na and K$H_2O$ was observed clearly and late stages of weathering processes. 3) The early stage of weathering is commenced by physical weathering and followed by chemical weathering. 4) The ratio of FeO/. $Fe_2O_3$, FeO/MgO, and $SiO_2/Al_2O_3 $ decreased uniformly from early to late stage of weathering processes. 5) It was proved that weathering potential of granite was larger than that of basaltic rocks.

  • PDF

Variation of chemical Composition and Relative migration of major Elements in the weathering of Baeg-Gu Granite (백구화강암(白鷗花崗巖)의 풍화(風化)에 따른 화학조성(化學組成)의 변화(變化)와 주요원소(主要元素)의 상대적(相對的) 이동(移動))

  • Nam, Ki Sang
    • Economic and Environmental Geology
    • /
    • v.7 no.4
    • /
    • pp.175-184
    • /
    • 1974
  • Weathering of granites has a great geochemical significance, because of their chemical stability near the earth surface which is more pronounced than in most other rocks. The author intended to observe the relative mobility of major elements in weathering process of the granite, distributed on outskirts of Iri city Jeolla-bugdo, Korea. He analysed fresh granites and weathered ones from the Baeg-Gu granite mass and obtained following conclusions in the triangle-diagrams and the oxidized variation diagrams of the samples. 1) The increasing phenomena of $H_2O$ was observed clearly in early and late stages of weathering process. 2) The early stage of weathering is commenced by physical weathering and followed by chemical weathering. 3) The ratio of $FeO/Fe_2O_3$, FeO/MgO, and $SiO_2/Al_2O_3$ decreased uniformly from early to late stage of weathering processes. 4) It was proved that weathering potential of granite was larger than that of basaltic rock. 5) The order of mobility in major elements was Ca, Na and K

  • PDF

Geochemical weathering properties of marine terrace sediment at Gangneung-Donghae area, South Korea (강릉-동해에 분포하는 해안단구 퇴적물의 지화학적 풍화 특성)

  • Hong, Seongchan;Choi, Jeong-Heon;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.95-108
    • /
    • 2016
  • Several flights of marine terraces were developed along the Eastern coast of Korea (Gangneung-Donghae). Various dating techniques have been applied to determine the age of these terraces, with a view to better understand the regional uplift history. In this study, we compare the major element compositions of the terrace deposits and modern beach sediments to estimate the relative formation age of these terraces. We observed a discernible difference in major element geochemistry between modern beach sediments and various elevated terrace deposit (i.e. palaeobeach sediments). In general, weathering properties of marine terrace sediments are expected to be affected by the formation ages of terraces, and here, we confirm that the chemical composition are indicative of the relative age of the terraces in this region.

KATSTIC SINKHOLE SEDIMENTS OF DOLOSTONE IN THE UPPER MIDWEST'S DRIFTLESS AREA, USA

  • Oh, Jong-woo
    • Journal of the Speleological Society of Korea
    • /
    • v.34 no.35
    • /
    • pp.78-104
    • /
    • 1993
  • Analysis of one sinkhole, the Dodgeville sinkhole, developed in Ordovician dolostones in the Driftless Area of Wisconsin in the Upper Midwest'd Driftless Area reveals homogenous clayey sediment fills reflecting a range of dissolutional processes during the Quaternary or Pre-Quaternary. Granulometric analysis, graphical moments statistics, carbonate minerals, ana sand grain lithology were used to differentiate sinkhole sediment sources and modes of accumulation. Sediments in the dolostone sinkholes developed by dissolution. Sediments contain two major types of sediments : residual redish clay( autogenic sediments) and aeolian silt (allogenic sediments). The massive clay is generated from the weathered dolostone bedrocks as a in situ materials. The loessial silt is mostly derived from transportation of the surrounding surface materials, with some evidences of penetrated deposition. Unlike the collapsed sandstone sinkholes (Oh et al., 1993), dolostone sinkholes reveal homogenous, autogenic clay materials, and a geochemical composition indicative of in situ autogenic karstification. Dolostone sinkhole si1ts (26.9%) and sands (34.9%) are derived from weathered Plattevi1le-Galena dolostones, and contain high carbonate(37.5%), chert (57.2%) and lead ore (3%). Graphical moments statistics for sorting, skewness, and kurtosis indicate that sand grains from dolostones were derived entirely from local bedrock by in situ dissolution. Upper sinkhole sediments are pedagogically very young as carbonate is unleashed. Materials of the sinkhole sediment are definitely inherited from internal dolostones by dissolution and weathering, because not only a granulomatric comparison of dolostone and sandstone sediments demonstrates that they have heterogeneous paticle size distributions, but also 1ithologic analyses displays they differ completely.

  • PDF

Geochemical Characteristics of Soil Solution from the Soil Near Mine Tailing Dumps and the Contamination Assessment in Duckum Mine (토양수의 자구화학특성에 따른 금속폐광산 광미야적장주변 토양오염평가: 덕음광산)

  • 이상훈;정주연
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.61-72
    • /
    • 2004
  • The soil samples were collected from the paddy field near the mine tailing dumps in the abandoned Duckum mine in Korea. In the laboratory, the soil solution was extracted from the soil using centrifuge, and analysed for the chemical composition. Physical and chemical soil properties were also analysed. Kaolinite is the main clay minerals in the paddy soil and the CEC value is therefore relatively low. Nearly all soil samples show enrichment in their trace elemental concentrations(Cd, Cu, Pb and Zn) compared with natural background level. Some soil samples exceed the soil remediation intervention values for Cd, Pb and Zn and target value for Cu, when compared with Dutch standard, whereas As, Ni and Cr are in normal range. Lead concentrations in some samples near the mine tailing dumps also exceed the standard for remediation act for agricultural area set by Korean soil conservation law. The trace elemental concentrations are higher in the paddy soil nearer the mine tailing dumps and lower for the samples from distance. Similar trend with distance is found for the soil solution chemistry but the decrease with distance from the mine tailing dumps are sharper than the changes in soil chemistry. Cadmium, Cu and Pb concentrations in the soil solution are very low, ranging from a tenth and hundredths to a maximum of several mg/l, whereas their concentrations in soils are highly enriched for natural background. Most of the trace elements are thought to be either removed by reduced iron sulphides or iron oxides, depending on the redox changes. Geochemical equilibrium modelling indicate the presence of solubility controlling solid phases for Cd and Pb, whereas Zn and Cu might have been controlled by adsorption/desorption processes. Although pollutants migration through solution phase are thought to be limited by adsorption onto various Fe, Mn solid phases, the pollutants exist as easily releasable fractions such as exchangeable site. In this case, the paddy soil would act as pollutant pool, which will supply to plants in situ. whenever the geochemical conditions favour.

Geochemical Characteristics of the Uljin Granitoids in Northeastern Part of the Yeongnam Massif, Korea (영남육괴 북동부 울진지역 화강암류의 지화학적 특성)

  • Wee, SooMeen;Kim, Ji-Young;Lim, Sung-Man
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.313-328
    • /
    • 2013
  • Jurassic granitoids in the northeastern part of the Yeongnam Massif are possibly the result of intensive magmatic activities that occurred in response to subduction of the proto-Pacific plate beneath the northeast portion of the Eurasian plate. Geochemical studies on the granitic rocks are carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the Uljin granitoids in the northeastern part of the Yeongnam Massif indicate that all of the rocks have the characteristics of calcalkaline series in subalkaline field. The overall major element trends show systematic variations in each granitic body, but the source materials of each granitoids seem to have different chemical composition. The Uljin granitoids are different from other granitic rocks, which distributed vicinity of the study area, in the contents of $Al_2O_3$ and trace elements such as Cr, Co, Ni, Sr, Y and Nb. The Uljin granitoids have geochemical features similar to slab-derived adakites such as high $Al_2O_3$, Sr contents and high Sr/Y, La/Yb ratios, but they have low Y and Yb contents. The major ($SiO_2$, $Al_2O_3$, MgO) and trace element (Sr, Y, La, Yb) contents of the Uljin granitoids fall well within the adakitic field. The Uljin granitoids have similar geochemical characteristics, paleotectonic environments and intrusion ages to those of the Yatsuo plutonic rocks of Hida belt located on northwestern part of Japan. Chondrite normalized REE patterns show generally enriched LREEs ($(La/Yb)_{CN}=10.6-103.4$) and are slight negative to flat Eu anomalies. On the ANK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at the continental margin during the subduction of Izanagi plate in Jurassic period.

Geochemical Characterization of Rock-Water Interaction in Groundwater at the KURT Site (물 암석 반응을 고려한 KURT 지하수의 지구화학적 특성)

  • Ryu, Ji-Hun;Kwon, Jang-Soon;Kim, Geon-Young;Koh, Yong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.189-197
    • /
    • 2012
  • Geochemical composition of fracture filling minerals and groundwater was investigated to characterize geochemical characteristics of groundwater system at the KURT site. Minerals such as calcite, illite, laumontite, chlorite, epidote, montmorillonite, and kaolinite, as well as I/S mixed layer minerals were detected in the minerals extracted from the fracture surfaces of the core samples. The groundwater from the DB-1, YS-1 and YS-4 boreholes showed alkaline conditions with pH of higher than 8. The electrical conductivity (EC) values of the groundwater samples were around $200{\mu}S/cm$, except for the YS-1 borehole. Dissolved oxygen was almost zero in the DB-1 borehole indicating highly reduced conditions. The Cl- concentration was estimated around 5 mg/L and showed homogeneous distribution along depths at the KURT site. It might indicate the mixing between shallow groundwater and deep groundwater. The shallow groundwater from boreholes showed $Ca-HCO_3$ type, whereas deep groundwater below 300 m from the surface indicated $Na-HCO_3$ type. The isotopic values observed in the groundwater ranged from -10.4 to -8.2‰ for ${\delta}^{18}O$ and from -71.3 to -55.0‰for ${\delta}D$. In addition, the isotope-depleted water contained higher fluoride concentration. The oxygen and hydrogen isotopic values of deep groundwater were more depleted compared to the shallow groundwater. The results from age dating analysis using $^{14}C$ indicated relatively younger (2000~6000yr old) groundwater compared to other european granitic groundwaters such as Stripa (Sweden).

Hydrogeochemical Research on the Characteristic of Chemical Weathering in a Granitic Gatchment (水文化學的 資料를 통한 花崗岩質 流域의 化學的 風化特性에 關한 硏究)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • This research aims to investigate some respects of chemical weathering processes, espcially the amount of solute leaching, formation of clay minerals, and the chemical weathering rate of granite rocks under present climatic conditions. For this purpose, I investigated geochemical mass balance in a small catchment and the mineralogical composition of weathered bedrocks including clay mineral assemblages at four res-pective sites along one slope. The geochemical mass blance for major elements of rock forming minerals was calculated from precipitation and streamwater data which are measured every week for one year. The study area is a climatically and litholo-gically homogeneous small catchment($3.62Km^2$)in Anyang-shi, Kyounggi-do, Korea. The be-drock of this area id Anyang Granite which is composed of coarse-giained, pink-colored miner-als. Main rock forming minerals are quartz, K-Feldspar, albite, and muscovite. One of the chracteristics of this granite rock is that its amount of Ca and Mg is much lower than other granite rock. The leaching pattern in the weathering profiles is in close reltion to the geochemical mass balance. Therefore the removal or accumulation of dissolved materials shows weathering patterns of granite in the Korean peninsula. Oversupplied ions into the drainage basin were $H^+$, $K^+$, Fe, and Mn, whereas $Na^2+$, $Mg^2+$, $Ca^2+$, Si, Al and $HCO-3^{-}$ were removed from the basin by the stream. The consumption of hydrogen ion in the catchment implies the hydrolysis of minerals. The surplus of $K^+$ reflects that vegetation is in the aggravation stage, and the nutrient cycle of the forest in study area did not reach a stable state. And it can be also presumed that the accumulation of $K^+$ in the top soil is related to the surplus of $K^+$. Oversupplied Fe and Mn were presumed to accumulate in soil by forming metallic oxide and hydroxide. In the opposite, the removal of $Na^+$, Si, Al resulted from the chemical weathering of albite and biotite, and the amount of removal of $Na^+$, Si, Al reflected the weathering rate of the bedrock. But $Ca^2+$ and $Mg^2+$ in stream water were contaminated by the scattered calcareous structures over the surface. Kaolinite is a stable clay mineral under the present environment by the thermodynamical analysis of the hydrogeochemical data and Tardy's Re value. But this result was quite different from the real assemblage of clay miner-als in soil and weathered bedrock. This differ-ence can be explained by the microenvironment in the weathering profile and the seasonal variation of climatic factors. There are different clay forming environments in the stydy area and these differences originate from the seasonal variation of climate, especially the flushing rate in the weathering profile. As it can be known from the results of the analysis of thermodynamic stability and characteristics of geochemical mas balance, the climate during winter and fall, when it is characterized by the low flushing rate and high solute influx, shows the environmental characteristics to from 2:1 clay minerals, such as illite, smectite, vermiculite and mixed layer clay minerals which are formed by neoformation or transformation from the primary or secondary minerals. During the summer and spring periods, kaoli-nite is a stable forming mineral. However it should consider that the other clay minerals can transformed into kaolinite or other clay minerals, because these periods have a high flushing rte and temperature. Materials which are directly regulated by chemical weathering in the weathered bedrock are $Na^+$, Si, and Al. The leaching of Al is, however, highly restricted and used to form a clay mineral, and that of Si falls under the same category. $Na^+$ is not taked up by growing veget ation, and fixed in the weathering profile by forming secondary minerals. Therefore the budget of $Na^+$ is a good indicator for the chemical weathering rate in the study area. The amount of chemical weathering of granite rocks was about 31.31g/$m^2+$/year based on $Na^+$ estimation.

  • PDF

Geochemistry and Petrogenesis of Adakitic Granitoids from Bognae Area in the Southwestern Part of the Yeongnam Massif, Korea (영남육괴 남서부 복내지역에 분포하는 아다카이트질 화강암체의 성인 및 지화학적 특성)

  • Wee, Soo-Meen;Park, Jae-Yong
    • Journal of the Korean earth science society
    • /
    • v.30 no.4
    • /
    • pp.427-443
    • /
    • 2009
  • Cretaceous intrusive and extrusive rocks in the southwestern part of the Yeongnam Massif are possibly the result of intensive magmatism which occurred in response to subduction of the Pacific plate beneath the northeast portion of the Eurasian plate. Geochemical and petrological study on the granitic rocks were carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the granitic rocks from the study area indicate that all the rocks have characteristics of calc-alkaline series in the subalkaline field. The overall geochemical features show systematic variations in each granitic body, but the source materials of each granitic body are thought to have been different in their chemical composition. The granodiorites distributed around Donggyori in the Bognae area (DGd) are different from other granitic rocks within the study area in the contents and differentiation trends of $Al_2O_3$ and MgO as well as in the contents of the trace elements such as Ba, Sr, Pb, Ni, Cr and Y DGd have geochemical features similar to slab-derived adakites such as high $Al_2O_3$, Sr contents and high Sr/Y, La/Yb ratios, but low Y and Yb contents. The major and trace element contents of the DGd fall well within the adakitic field, whereas other Cretaceous granites in the study area are plotted in the island arc ADR area in Sr/Y vs. Y diagram. On the ANK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at continental margin during the subduction of Pacific plate. The geochemical and tectonic features reveal that adakite-like signatures of the DGd were generated by the interaction of mantle peridotite and subducted slab-derived adakitic melts (caused by the thermal effect of ridge subduction), and which slightly modified by crustal contamination during emplacement.

Reconstruction of Changes in Eolian Particle Deposition Across the Mid-Pleistocene Transition in the Central Part of the North Pacific (중기 플라이스토세 전이기 전후 북태평양 중앙 해역 퇴적물에 기록된 풍성 퇴적물 입자 퇴적 양상 변화 복원)

  • Lee, Sojung;Seo, Inah;Hyeong, Kiseong
    • Ocean and Polar Research
    • /
    • v.41 no.4
    • /
    • pp.275-288
    • /
    • 2019
  • We investigated flux, grain size distribution, Nd-Sr isotope composition, mineral composition, and trace metal composition (REEs and Sc) of inorganic silicate fraction (ISF, mainly Asian dust with an unrestricted amount of volcanic materials) deposited during 600~1000 ka across the Mid-Pleistocene Transition at core NPGP 1401-2A (32°01'N, 178°59'E, 5205m) taken from the central part of the North Pacific. Our results reveal about a 2-fold increase in ISF flux after 800 ka, which is associated with an increase in La/Sc and a decrease in mean grain size. Asian dusts are finer than volcanic materials and La/Sc increases with the enhanced contribution of Asian dusts. Thus, increased flux after 800 ka can be explained by the increased contribution of Asian dusts relative to volcanic materials, likely due to an intensified Westerly Jet (WJ) and the drying of the Asian continent after the MPT. Mean grain size of ISF varies systematically in relation to glacial-interglacial cycles with a decrease during glacial stages, which is consistent with the previous results in the study area. Such a cyclical pattern is also attributed to the increase in the relative contribution of Asian dusts over volcanic components in glacial stages due to intensified WJ and drying of the Asian continent. Thus, it can be concluded that climate changes that had occurred across the MPT were similar to those of interglacial to glacial transitions at least in terms of the dust budget. Different from the Shatsky Rise, however, compositional changes associated with glacial-interglacial mean grain size fluctuations are not observed in Nd-Sr isotope ratios and trace element composition in our study of the Hess Rise. This may be attributed to the location of the study site far (> 4,000 km) from the volcanic sources. The volcanic component at the study site comprises less than 10% and varies within 3% over glacial-interglacial cycles. Such a small variation was not enough to imprint geochemical signals.