• 제목/요약/키워드: geo-environmental

검색결과 1,869건 처리시간 0.032초

2010년 시화호유역 질소 물질수지 산정 (Estimation of Nitrogen Mass Balance in Sihwa-ho Watershed, 2010)

  • 최정길;이효진;김태하;최재훈;우준식;이강웅
    • 한국환경과학회지
    • /
    • 제27권3호
    • /
    • pp.179-193
    • /
    • 2018
  • Nitrogen budgets in Sihwa-ho in 2010 were estimated using a mass balance approach. Major nitrogen fluxes sources can be divided into three sections: cities, agricultural area, and forest. Surplus nitrogen 2,030~2,214 ton/yr (2,123 ton/yr in average) was discharged to Sihwa Lake. 20% of the surplus nitrogen is removed from the wetland and 60% is removed tidal flats. Therefore net nitrogen discharge from Sihwa basin is estimated to be 650~708 ton/yr (679 ton/yr in average). Wet and dry nitrogen deposition and load from non-point sources ware estimated to be 97 ton/yr and 69 ton/yr, deposition is using CAMx model. So estimated total nitrogen discharge into Sihwa-ho was 817~875 ton/yr (846 ton/yr in average). The atmospheric load explains 11.1~11.9% (11.5% in average) of the total nitrogen load Sihwa-ho.

소유역에서의 토사유출 산정을 위한 GeoWEPP model과 USLE의 비교.적용 연구 - 이천시 단월동 유역을 사례로 (Application and Comparison of GeoWEPP model and USLE model to Natural Small Catchment - A Case Study in Danwol-dong, Icheon-si)

  • 김민석;김진관;양동윤
    • 자원환경지질
    • /
    • 제40권1호
    • /
    • pp.103-113
    • /
    • 2007
  • GIS와 연계시켜 만든 분산형 모델의 대표적인 경험식인 USLE model과 물리학기반의 GeoWEPP model을 경기도 이천시에 위치한 소유역에 적용하여 2004년 1월에서 2005년 1월까지 1년간의 토사유출량을 비교하였다. 연구기간동안의 유출된 토사량은 실제관측결과 270.54 ton, USLE 모델 적용 시 358.1 ton, 그리고 GeoWEPP 모델 적용 시 283.30 ton으로 각각 산출되었다. 각각의 모델을 적용한 산출량은 실제 산출량보다 과대하게 산출되었으며, 산출결과만을 볼 때, GeoWEPP 모델을 적용한 토사유출량이 USLE 적용 산출량 보다 관측량에 더 근사한 산출량을 보였다. 모델 적용 산출량이 과대산출 된 원인으로는 실험웨어를 월류하여 빠져나간 부유물에 대한 양이 포함되지 않았기 때문으로 판단된다.

Estimated groundwater recharge including water pipes leakage in Kumagaya City

  • Saito, Keisuke;Ogawa, Susumu;Takamura, Hiroki;Yashiro, Yusuke
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.735-737
    • /
    • 2003
  • The drying up of seepage in Kumagaya City was caused by the increase of impermeable area with urbanization. The project of rain fall infiltration facilities has been planned for improvement of a hydrological cycle in Kumagaya City. With GIS and remote sensing, the most suitable arrangement for the rainfall infiltration inlets was examined. Distribution maps for infiltration, evapotranspiration and groundwater recharge at each town in Kumagaya City was designed from the land cover classification map with hydrological analysis. In these distribution maps, influence of the leak from drinking water and sewage networks was counted to the hydrological cycle.

  • PDF

GeoWEPP과 SWAT 모델을 이용한 산지 유역 강우-유출량 특성 분석 (Analysis of Rainfall-Runoff Characteristic at Mountainous Watershed Using GeoWEPP and SWAT Model)

  • 김지수;김민석;김진관;오현주;우충식
    • 한국지형학회지
    • /
    • 제28권2호
    • /
    • pp.31-44
    • /
    • 2021
  • Due to recent climate change, continuous soil loss is occurring in the mountainous watershed. The development of geographic information systems allows the spatial simulation of soil loss through hydrological models, but more researches applied to the mountain watershed areas in Korea are needed. In this study, prior to simulating the soil loss characteristics of the mountainous watershed, the field monitoring and the SWAT and GeoWEPP models were used to simulate and analyze the rainfall and runoff characteristics in the mountainous watershed area of Jirisan National Park. As a result of monitoring, runoff showed a characteristic of a rapid response as rainfall increased and decreased. In the simulation runoff results of calibrated SWAT models, R2, RMSE and NSE was 0.95, 0.03, and 0.95, respectively. The runoff simulation results of the GeoWEPP model were evaluated as 0.89, 0.30, and 0.83 for R2, RMSE, and NSE, respectively. These results, therefore, imply that the runoff simulated through SWAT and GeoWEPP models can be used to simulate soil loss. However, the results of the two models differ from the parameters and base flow of actual main channel, and further consideration is required to increase the model's accuracy.