• Title/Summary/Keyword: genomic integration

Search Result 101, Processing Time 0.029 seconds

Identification and Phylogeny of the Human Endogenous Retrovirus HERV-W LTR Family in Cancer Cells

  • Yi, Joo-Mi;Kim, Hwan-Mook;Kim, Heui-Soo
    • Animal cells and systems
    • /
    • v.6 no.2
    • /
    • pp.167-170
    • /
    • 2002
  • The long terminal repeats (LTRs) of human endogenous retrovirus (HERV) have been found to be coexpressed with sequences of closely located genes. It has been suggested that the LTR elements have contributed to the structural change or genetic variation of human genome connected to various diseases and evolution. We examined the HERV-W LTR elements in various cancer cells (2F7, A43l , A549, HepG2, MIA-PaCa-2, PC-3, RT4, SiHa, U-937, and UO-31). Using genomic DNA from the cancer cells, we performed PCR amplification and identified twelve new HERV-W LTR elements. Those LTR elements showed a high degree of sequence similarity (88-99%) with HERV-W LTR (AF072500). A phylogenetic tree obtained by the neighbor-joining method revealed that HERV-W LTR elements could be mainly divided into two groups through evolutionary divergence. Three HERV-W LTR elements (RT4-2, A43l-1, and UO3l-2) belonged to Group 1, whereas nine LTR elements (2F7-2, A549-1, A549-3, HepG2-3, MP2-2, PC3-1, SiHa-8, SiHa-10, and U937-1) belonged to Group 11. Taken together, our new sequence data of the HERV-W LTR elements may contribute to an understanding of tissue-specific cancer by genomic instability of LTR integration.

Soybean Improvement for Drought, Salt and Flooding Tolerance

  • Pathan, Safiullah;Nguyen, Henry T.;Sharp, Robert E.;Shannon, J. Grover
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.329-338
    • /
    • 2010
  • Drought, salinity and flooding are three important abiotic factors limiting soybean production worldwide. Irrigation, soil reclamation, and drainage systems are not generally available or economically feasible for soybean production. Therefore, productive soybean varieties with tolerance are a cost effective means for reducing yield losses due to these factors. Genetic variability for higher tolerance to drought, salt and flooding is important. However, only a small portion of nearly 200,000 world soybean accessions have been screened to find genotypes with tolerance for use in breeding programs. Evaluation for tolerance to drought, salinity and flooding is difficult due to lack of faster, cost effective, repeatable screening methods. Soybean strains with higher tolerance to the above stresses have been identified. Crosses with lines with drought, salt and flooding tolerance through conventional breeding has made a significant contribution to improving tolerance to abiotic stress in soybean. Molecular markers associated with tolerance to drought, salt and flooding will allow faster, reliable screening for these traits. Germplasm resources, genome sequence information and various genomic tools are available for soybean. Integration of genomic tools coupled with well-designed breeding strategies and effective uses of these resources will help to develop soybean varieties with higher tolerance to drought, salt and flooding.

The future of bioinformntics

  • Gribskov, Michael
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.1-1
    • /
    • 2003
  • It is clear that computers will play a key role in the biology of the future. Even now, it is virtually impossible to keep track of the key proteins, their names and associated gene names, physical constants(e.g. binding constants, reaction constants, etc.), and hewn physical and genetic interactions without computational assistance. In this sense, computers act as an auxiliary brain, allowing one to keep track of thousands of complex molecules and their interactions. With the advent of gene expression array technology, many experiments are simply impossible without this computer assistance. In the future, as we seek to integrate the reductionist description of life provided by genomic sequencing into complex and sophisticated models of living systems, computers will play an increasingly important role in both analyzing data and generating experimentally testable hypotheses. The future of bioinformatics is thus being driven by potent technological and scientific forces. On the technological side, new experimental technologies such as microarrays, protein arrays, high-throughput expression and three-dimensional structure determination prove rapidly increasing amounts of detailed experimental information on a genomic scale. On the computational side, faster computers, ubiquitous computing systems, high-speed networks provide a powerful but rapidly changing environment of potentially immense power. The challenges we face are enormous: How do we create stable data resources when both the science and computational technology change rapidly? How do integrate and synthesize information from many disparate subdisciplines, each with their own vocabulary and viewpoint? How do we 'liberate' the scientific literature so that it can be incorporated into electronic resources? How do we take advantage of advances in computing and networking to build the international infrastructure needed to support a complete understanding of biological systems. The seeds to the solutions of these problems exist, at least partially, today. These solutions emphasize ubiquitous high-speed computation, database interoperation, federation, and integration, and the development of research networks that capture scientific knowledge rather than just the ABCs of genomic sequence. 1 will discuss a number of these solutions, with examples from existing resources, as well as area where solutions do not currently exist with a view to defining what bioinformatics and biology will look like in the future.

  • PDF

Development of Bialaphos Resistant Transgenic Tabacco Plants by Pollination and Utilization of Fertilization Cycle (수분ㆍ수정 시기를 이용한 Bialaphos 저항성 형질전환 담배의 개발)

  • ;;;;;;Toshiaki KAMEYA
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.2
    • /
    • pp.99-103
    • /
    • 1994
  • The herbicide bialaphos is a potent inhibitor of glutamine synthetase in higher plants. A bialaphos resistance (bar) gene encoding for an acetyltransferase was isolated from genomic DNA of Pseudomonas syringae pv tabaci. The bar gene was ligated to the binary vector pBI121. Pistils of tobacco plane were heated with the bar gene containing plasmid DNA at various times after pollination. When the treatment was applied at 30 and 40 h after pollination, a number of transgenic plants were obtained. Premary transformation (T$_{0}$ generation) and their progenies (T$_1$T$_2$) were resistant to both bialaphos and kanamycin at a dosage lathal to untransformed control plants. Stable integration of bar gene into chromosomal DNA was proven by Southern blot analysis of genomic DNA isolated from T$_1$progenies. These results show that the bialaphos resistant plane could be obtained by treatment to pistils with the exgenous bar gene through the fertilization cycle of tobacco.o.

  • PDF

Use of Graph Database for the Integration of Heterogeneous Biological Data

  • Yoon, Byoung-Ha;Kim, Seon-Kyu;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • Understanding complex relationships among heterogeneous biological data is one of the fundamental goals in biology. In most cases, diverse biological data are stored in relational databases, such as MySQL and Oracle, which store data in multiple tables and then infer relationships by multiple-join statements. Recently, a new type of database, called the graph-based database, was developed to natively represent various kinds of complex relationships, and it is widely used among computer science communities and IT industries. Here, we demonstrate the feasibility of using a graph-based database for complex biological relationships by comparing the performance between MySQL and Neo4j, one of the most widely used graph databases. We collected various biological data (protein-protein interaction, drug-target, gene-disease, etc.) from several existing sources, removed duplicate and redundant data, and finally constructed a graph database containing 114,550 nodes and 82,674,321 relationships. When we tested the query execution performance of MySQL versus Neo4j, we found that Neo4j outperformed MySQL in all cases. While Neo4j exhibited a very fast response for various queries, MySQL exhibited latent or unfinished responses for complex queries with multiple-join statements. These results show that using graph-based databases, such as Neo4j, is an efficient way to store complex biological relationships. Moreover, querying a graph database in diverse ways has the potential to reveal novel relationships among heterogeneous biological data.

Introduction of Shiva Gene into tobacco and Potato Using Tissue-Specific Tomato PAL Promoter (조직특이성 promoter를 이용한 Shiva 유전자의 식물체내 도입)

  • 이정윤;이신우;박권우
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.2
    • /
    • pp.109-113
    • /
    • 1998
  • In this study we tried to transform an antimicrobial peptide gene (Shiva) under the promoter of tomato phenylalanine ammonia-lyase (tPAL5) into tobacco and potato plants. Antimicrobial peptide gene was isolated originally from giant silk moth (Hyalophora cecropia) and modified ie nucleotide sequence to increase antimicrobial activity. Transgenic tobacco plants were regenerated and their seeds were tested on the media containing kanamycin (500 mg/L). The results of PCR amplification and genomic Southern blot hybridization confirmed the integration of construct (tPAL5 promoter-Shiva-NOS-GUS-NOS) into chromosome. We observed that one of the transgenic tobacco plants showed chromosome rearrangement when integrated. In case of potato transformation, the efficiency of regeneration was maximized at the medium containing Zeatin 2mg/L, NAA 0.01mg/L, GA$_3$ 0.1mg/L. We also observed the high expression of GUS (${\beta}$-glucuronidase) enzyme which was located next to the terminator sequence of nopaline synthase gene (NOS) in the vascular tissue of stem, leaves of transgenic potatoes. This result suggested that a short sequence of Shiva gene (120 bp) and NOS terminator sequence might be served as a leader sequence of transcript when translated.

  • PDF

Genomic characterization of clonal evolution during oropharyngeal carcinogenesis driven by human papillomavirus 16

  • Chae, Jeesoo;Park, Weon Seo;Kim, Min Jung;Jang, Se Song;Hong, Dongwan;Ryu, Junsun;Ryu, Chang Hwan;Kim, Ji-Hyun;Choi, Moon-Kyung;Cho, Kwan Ho;Moon, Sung Ho;Yun, Tak;Kim, Jong-Il;Jung, Yuh-Seog
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.584-589
    • /
    • 2018
  • Secondary prevention via earlier detection would afford the greatest chance for a cure in premalignant lesions. We investigated the exomic profiles of non-malignant and malignant changes in head and neck squamous cell carcinoma (HNSCC) and the genomic blueprint of human papillomavirus (HPV)-driven carcinogenesis in oropharyngeal squamous cell carcinoma (OPSCC). Whole-exome (WES) and whole-genome (WGS) sequencing were performed on peripheral blood and adjacent non-tumor and tumor specimens obtained from eight Korean HNSCC patients from 2013 to 2015. Next-generation sequencing yielded an average coverage of $94.3{\times}$ for WES and $35.3{\times}$ for WGS. In comparative genomic analysis of non-tumor and tumor tissue pairs, we were unable to identify common cancer-associated early mutations and copy number alterations (CNA) except in one pair. Interestingly, in this case, we observed that non-tumor tonsillar crypts adjacent to HPV-positive OPSCC appeared normal under a microscope; however, this tissue also showed weak p16 expression. WGS revealed the infection and integration of high-risk type HPV16 in this tissue as well as in the matched tumor. Furthermore, WES identified shared and tumor-specific genomic alterations for this pair. Clonal analysis enabled us to infer the process by which this transitional crypt epithelium (TrCE) evolved into a tumor; this evolution was accompanied by the subsequent accumulation of genomic alterations, including an ERBB3 mutation and large-scale CNAs, such as 3q27-qter amplification and 9p deletion. We suggest that HPV16-driven OPSCC carcinogenesis is a stepwise evolutionary process that is consistent with a multistep carcinogenesis model. Our results highlight the carcinogenic changes driven by HPV16 infection and provide a basis for the secondary prevention of OPSCC.

Estimation of the Efficiency of Transgenic Rabbit Production Following GFP Gene Microinjection into Rabbit Zygotes

  • Jin, D.I.;Im, K.S.;Kim, D.K.;Choi, W.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.10
    • /
    • pp.1367-1372
    • /
    • 2000
  • The present study was conducted to evaluate the efficiency of transgenic rabbit production by DNA microinjection using EGFP (Enhanced Green Fluorescent Protein) gene. In this experiment EGFP coding sequences fused to CMV promoter were microinjected into rabbit one-cell embryos, and then GFP expression and gene integration were evaluated in preimplantation embryos and fetuses recovered on day 15 of pregnancy to determine efficiency of transgenic rabbit production. Effect of DNA concentration was also tested on development in vitro following microinjection and transgene integration in fetuses. Development of embryos in vitro was decreased by DNA microinjection, but the rates of pregnancy and implantation were not significantly affected by microinjection. As development progressed in vitro percentage of GFP expression in rabbit embryos was decreased, resulting GFP expression detected in 37.5% of blastocysts. The efficiencies for production of transgenic fetuses were 4.0% and 7.6%, respectively, when $10ng/{\mu}l$ and $20ng/{\mu}l$ of DNA concentration were microinjected. Transgenic fetuses were confirmed by GFP expression and PCR analysis of fetus genomic DNA. These results indicated that DNA microinjection itself damaged embryo development and DNA concentration affected the efficiency of transgenic rabbit production.

Transformation of A Plant by Ascorbate Peroxidase Gene using Agrobacterium tumefaciens (Ascorbate Peroxidase 유전자의 도입에 의한 식물의 형질전환)

  • 이인애;이효신;배은경;김기용;이병현;손대영;조진기
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.22 no.2
    • /
    • pp.101-106
    • /
    • 2002
  • This study was conducted to obtain the transformed tobacco (Nicotiana tubacum) plants with cytosolic ascorbate peroxidase gene(ApxSC7) using Agrobacterium tumefaciens LBA4404. A cDNA encoding the cytosolic ascorbate peroxidase of strawberry, ApxSC7, was introduced into tobacco plants via Agrobacterium-mediated gene transfer system. The expression vector, pIG-AP8, harboring ApxSC7 gene was used for production of transgenic tobacco plants. A large number of transgenic plants were regenerated on a medium containing hygromycin. Integration of ApxSC7 gene was confirmed by PCR and Southern blot analyses with genomic DNA. Northern blot analyses revealed that the pIGap8 gene was constitutively expressed.

Transformation of Orchardgrass (Dactylis glomerata L.) with Glutathione Reductase Gene (Glutathione Reductase 유전자의 도입에 의한 오차드그래스의 형질전환)

  • 이효신;배은경;김기용;원성혜;정민섭;조진기
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • To develop transgenic orchardgrass resistant to reactive oxygen species produced from environmental stresses, a vector with the cytosolic glutathione reductase cDNA (BcGRl) from Chinese cabbage was constructed under the control of the cauliflower mosaic virus 35S promoter and was introduced into orchardgrass using Agrobacterium tumefaciens EHA101. Transgenic plants from hygromycin-selected calli of orchardgrass did not show any morphological difference from wild-type plants. The results of PCR amplification and genomic Southern blot analysis confirmed the integration of foreign gene into the chromosome of transgenic orchardgrass. Northern blot analysis with total RNA from leaves also confirmed the constitutive expression of BcGR1 in transgenic orchardgrass.

  • PDF