• 제목/요약/키워드: genomic data

검색결과 625건 처리시간 0.034초

Estimation of p-values with Two Dimensional Null Distributions from Genomic Data Set

  • Yee, Jaeyong;Park, Mira
    • Journal of the Korean Data Analysis Society
    • /
    • 제20권6호
    • /
    • pp.2711-2719
    • /
    • 2018
  • When an observable is described by a single value, the statistic significance may be estimated by construction of null distribution using permutation and counting the portion of it that exceeds the observed value by chance. Genome-wide association study usually focuses on the association measure between a single or interacting genotypes with a single phenotype. However investigation of common genotypes associated simultaneously on multiple phenotypes may involve the observables that should be described with multiple numbers. Statistical significance for such an observable would involve null distribution in multiple dimensions. In this study, extension of the p-value estimation process using null distribution in one dimension has been sought that may be applicable to two dimensional case. Comparison of the position of points within the set of points they form has been proposed to use a positioning parameter inspired by the extension of the Kolmogorov-Smirnov statistic to two dimensions.

Genetic Variation and Relationships of Korean Native Chickens and Foreign Breeds Using 15 Microsatellite Markers

  • Kong, H.S.;Oh, J.D.;Lee, J.H.;Jo, K.J.;Sang, B.D.;Choi, C.H.;Kim, S.D.;Lee, S.J.;Yeon, S.H.;Jeon, G.J.;Lee, H.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권11호
    • /
    • pp.1546-1550
    • /
    • 2006
  • The purpose of this study was to assess the genetic variation and establish the relationship amongst breeds and strains using 15 chicken specific microsatellite markers. A total of 285 unrelated DNA samples from four Korean native chicken strains (Black strain of Korean native chicken; KL, Red Brown strain of Korean native chicken; KR, Ogol strain of Korean native chicken; KS and Yellow Brown strain of Korean native chicken; KY) and three introduced chicken breeds (F strain of White Leghorn; LF, K strain of White Leghorn; LK, Rhode Island Red; RC and Cornish; CN) were genotyped to estimate within and between breed genetic diversity indices. All the loci analyzed in 15 microsatellite markers showed a polymorphic pattern and the number of alleles ranged from 5 to 14. The polymorphism information content (PIC) of UMA1019 was the highest (0.872) and that of ADL0234 was the lowest (0.562). The expected total heterozygosity (He) within breed and mean number of observed alleles ranged from 0.540 (LF) to 0.689 (KY), and from 3.47 (LK) to 6.07 (KR), respectively. The genetic variation of KR and KY were the highest and the lowest within Korean native strains, respectively. The genetic distance results showed that Korean native chicken strains were separated with the three introduced chicken breeds clustered into another group. The lowest distance (0.149) was observed between the KR and KL breeds and the highest distance (0.855) between the KR and LK breeds. The microsatellite polymorphism data were shown to be useful for assessing the genetic relationship between Korean native strains and other foreign breeds.

Thoroughbred Horse Single Nucleotide Polymorphism and Expression Database: HSDB

  • Lee, Joon-Ho;Lee, Taeheon;Lee, Hak-Kyo;Cho, Byung-Wook;Shin, Dong-Hyun;Do, Kyoung-Tag;Sung, Samsun;Kwak, Woori;Kim, Hyeon Jeong;Kim, Heebal;Cho, Seoae;Park, Kyung-Do
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권9호
    • /
    • pp.1236-1243
    • /
    • 2014
  • Genetics is important for breeding and selection of horses but there is a lack of well-established horse-related browsers or databases. In order to better understand horses, more variants and other integrated information are needed. Thus, we construct a horse genomic variants database including expression and other information. Horse Single Nucleotide Polymorphism and Expression Database (HSDB) (http://snugenome2.snu.ac.kr/HSDB) provides the number of unexplored genomic variants still remaining to be identified in the horse genome including rare variants by using population genome sequences of eighteen horses and RNA-seq of four horses. The identified single nucleotide polymorphisms (SNPs) were confirmed by comparing them with SNP chip data and variants of RNA-seq, which showed a concordance level of 99.02% and 96.6%, respectively. Moreover, the database provides the genomic variants with their corresponding transcriptional profiles from the same individuals to help understand the functional aspects of these variants. The database will contribute to genetic improvement and breeding strategies of Thoroughbreds.

한국인 후두 편평 상피 세포암의 유전체 이상분석: Array 비교 유전체 보합법 (Genomic Alterations in Korean Laryngeal Squamous Cell Carcinoma: Array-Comparative Genomic Hybridization)

  • 조윤희;박수연;이동욱;김한수;이자현;박혜상;정성민
    • 대한두경부종양학회지
    • /
    • 제24권2호
    • /
    • pp.155-161
    • /
    • 2008
  • Head and neck squamous cell carcinoma(HNSCC) still has poor outcome, and laryngeal cancer is the most frequent subtype of HNSCC. Therefore, there is a need to develop novel treatments to improve the outcome of patients with HNSCC. It is critical to gain further understanding on the molecular and chromosomal alteration of HNSCC to identify novel therapeutic targets but genetic etiology of squamous cell carcinoma of the larynx is so complex that target genes have not yet been clearly identified. Array based CGH(array-CGH) allows investigation of general changes in target oncogenes and tumor suppressor genes, which should, in turn, lead to a better understanding of the cancer process. In this study, We used genomic wide array-CGH in tissue specimens to map genomic alterations found in laryngeal squamous cell carcinomas. As results, gains of MAP2, EPHA3, EVI1, LOC389174, NAALADL2, USP47, CTDP1, MASP1, AHRR, and KCNQ5, with losses of SRRM1L, ANKRD19, FLJ39303, ZNF141, DSCAM, GPR27, PROK2, ARPP-21, and B3GAT1 were observed frequently in laryngeal squamous cell carcinoma tissue specimens. These data about the patterns of genomic alterations could be a basic step for understanding more detailed genetic events in the carcinogenesis and also provide information for diagnosis and treatment in laryngeal squamous cell carcinoma. The high resolution of array-CGH combined with human genome database would give a chance to find out possible target genes which were gained or lost clones.

Comparative Genome-Scale Expression Analysis of Growth Phase-dependent Genes in Wild Type and rpoS Mutant of Escherichia coli

  • Oh, Tae-Jeong;Jung, Il-Lae;Woo, Sook-Kyung;Kim, Myung-Soon;Lee, Sun-Woo;Kim, Keun-Ha;Kim, In-Gyu;An, Sung-Whan
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2004년도 Annual Meeting BioExibition International Symposium
    • /
    • pp.258-265
    • /
    • 2004
  • Numerous genes of Escherichia coli have been shown to growth phase-dependent expression throughout growth. The global patterns of growth phase-dependent gene expression of E. coli throughout growth using oligonucleotide microarrays containing a nearly complete set of 4,289 annotated open reading frames. To determine the change of gene expression throughout growth, we compared RNAs taken from timecourses with common reference RNA, which is combined with equal amount of RNA pooled from each time point. The hierarchical clustering of the conditions in accordance with timecourse expression revealed that growth phases were clustered into four classes, consistent with known physiological growth status. We analyzed the differences of expression levels at genome level in both exponential and stationary growth phase cultures. Statistical analysis showed that 213 genes are shown to, growth phase-dependent expression. We also analyzed the expression of 256 known operons and 208 regulatory genes. To assess the global impact of RpoS, we identified 193 genes coregulated with rpoS and their expression levels were examined in the isogenic rpoS mutant. The results revealed that 99 of 193 were novel RpoS-dependent stationary phase-induced genes and the majority of those are functionally unknown. Our data provide that global changes and adjustments of gene expression are coordinately regulated by growth transition in E. coli.

  • PDF

Comparison of genomic predictions for carcass and reproduction traits in Berkshire, Duroc and Yorkshire populations in Korea

  • Iqbal, Asif;Choi, Tae-Jeong;Kim, You-Sam;Lee, Yun-Mi;Alam, M. Zahangir;Jung, Jong-Hyun;Choe, Ho-Sung;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권11호
    • /
    • pp.1657-1663
    • /
    • 2019
  • Objective: A genome-based best linear unbiased prediction (GBLUP) method was applied to evaluate accuracies of genomic estimated breeding value (GEBV) of carcass and reproductive traits in Berkshire, Duroc and Yorkshire populations in Korean swine breeding farms. Methods: The data comprised a total of 1,870, 696, and 1,723 genotyped pigs belonging to Berkshire, Duroc and Yorkshire breeds, respectively. Reference populations for carcass traits consisted of 888 Berkshire, 466 Duroc, and 1,208 Yorkshire pigs, and those for reproductive traits comprised 210, 154, and 890 dams for the respective breeds. The carcass traits analyzed were backfat thickness (BFT) and carcass weight (CWT), and the reproductive traits were total number born (TNB) and number born alive (NBA). For each trait, GEBV accuracies were evaluated with a GEBV BLUP model and realized GEBVs. Results: The accuracies under the GBLUP model for BFT and CWT ranged from 0.33-0.72 and 0.33-0.63, respectively. For NBA and TNB, the model accuracies ranged 0.32 to 0.54 and 0.39 to 0.56, respectively. The realized accuracy estimates for BFT and CWT ranged 0.30 to 0.46 and 0.09 to 0.27, respectively, and 0.50 to 0.70 and 0.70 to 0.87 for NBA and TNB, respectively. For the carcass traits, the GEBV accuracies under the GBLUP model were higher than the realized GEBV accuracies across the breed populations, while for reproductive traits the realized accuracies were higher than the model based GEBV accuracies. Conclusion: The genomic prediction accuracy increased with reference population size and heritability of the trait. The GEBV accuracies were also influenced by GEBV estimation method, such that careful selection of animals based on the estimated GEBVs is needed. GEBV accuracy will increase with a larger sized reference population, which would be more beneficial for traits with low heritability such as reproductive traits.

The Prediction Ability of Genomic Selection in the Wheat Core Collection

  • Yuna Kang;Changsoo Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.235-235
    • /
    • 2022
  • Genome selection is a promising tool for plant and animal breeding, which uses genome-wide molecular marker data to capture large and small effect quantitative trait loci and predict the genetic value of selection candidates. Genomic selection has been shown previously to have higher prediction accuracies than conventional marker-assisted selection (MAS) for quantitative traits. In this study, the prediction accuracy of 10 agricultural traits in the wheat core group with 567 points was compared. We used a cross-validation approach to train and validate prediction accuracy to evaluate the effects of training population size and training model.As for the prediction accuracy according to the model, the prediction accuracy of 0.4 or more was evaluated except for the SVN model among the 6 models (GBLUP, LASSO, BayseA, RKHS, SVN, RF) used in most all traits. For traits such as days to heading and days to maturity, the prediction accuracy was very high, over 0.8. As for the prediction accuracy according to the training group, the prediction accuracy increased as the number of training groups increased in all traits. It was confirmed that the prediction accuracy was different in the training population according to the genetic composition regardless of the number. All training models were verified through 5-fold cross-validation. To verify the prediction ability of the training population of the wheat core collection, we compared the actual phenotype and genomic estimated breeding value using 35 breeding population. In fact, out of 10 individuals with the fastest days to heading, 5 individuals were selected through genomic selection, and 6 individuals were selected through genomic selection out of the 10 individuals with the slowest days to heading. Therefore, we confirmed the possibility of selecting individuals according to traits with only the genotype for a shorter period of time through genomic selection.

  • PDF

Caffeine inhibits adipogenesis through modulation of mitotic clonal expansion and the AKT/GSK3 pathway in 3T3-L1 adipocytes

  • Kim, Hyo Jung;Yoon, Bo Kyung;Park, Hyounkyoung;Seok, Jo Woon;Choi, Hyeonjin;Yu, Jung Hwan;Choi, Yoonjeong;Song, Su Jin;Kim, Ara;Kim, Jae-woo
    • BMB Reports
    • /
    • 제49권2호
    • /
    • pp.111-115
    • /
    • 2016
  • Caffeine has been proposed to have several beneficial effects on obesity and its related metabolic diseases; however, how caffeine affects adipocyte differentiation has not been elucidated. In this study, we demonstrated that caffeine suppressed 3T3-L1 adipocyte differentiation and inhibited the expression of CCAAT/enhancer binding protein (C/EBP)α and peroxisome proliferator-activated receptor (PPAR)γ, two main adipogenic transcription factors. Anti-adipogenic markers, such as preadipocyte secreted factor (Pref)-1 and Krüppel-like factor 2, remained to be expressed in the presence of caffeine. Furthermore, 3T3-L1 cells failed to undergo typical mitotic clonal expansion in the presence of caffeine. Investigation of hormonal signaling revealed that caffeine inhibited the activation of AKT and glycogen synthase kinase (GSK) 3 in a dose-dependent manner, but not extracellular signal-regulated kinase (ERK). Our data show that caffeine is an anti-adipogenic bioactive compound involved in the modulation of mitotic clonal expansion during adipocyte differentiation through the AKT/GSK3 pathway.

Genetic Relationships of Cattle Breeds Assessed by PCR-RFLP of the Bovine Mitochondrial DNA D-loop Region

  • Yoon, Du Hak;Lee, Hak Kyo;Oh, Sung Jung;Hong, Ki Chang;Jeon, Gwang Joo;Kong, Hong Sik;Lee, Jun Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권10호
    • /
    • pp.1368-1374
    • /
    • 2005
  • To investigate the genetic relationships among various cattle breeds, bovine mtDNA D-loop region was used in 411 animals of 18 cattle breeds, including 8 Asian Bos taurus, 7 European Bos taurus, 1 Asian Bos indicus, and 2 African Bos indicus. The size of amplified PCR products from mtDNA D-loop region was 964 bp and the products were digested by 15 different restriction enzymes. Two different band patterns were identified in eight restriction enzymes (BstXI, Hae III, Msp I, Apa I, Taq I, Alu I, BamH I, EcoN I) and the rest of restriction enzymes showed more than 3 different band patterns among which Apo I and MspR9 resulted in 7 different restriction patterns. The genotypes, number of haplotype, effective number of haplotype, and degree of heterozygosity were analyzed. Based on all the PCR-RFLP data, different haplotypes were constructed and analyzed for calculating genetic distances between these breeds using Nei's unbiased method and constructing a phylogenetic tree.

Quantitative analysis using decreasing amounts of genomic DNA to assess the performance of the oligo CGH microarray

  • Song Sunny;Lazar Vladimir;Witte Anniek De;Ilsley Diane
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2006년도 Principles and Practice of Microarray for Biomedical Researchers
    • /
    • pp.71-76
    • /
    • 2006
  • Comparative genomic hybridization (CGH) is a technique for studying chromosomal changes in cancer. As cancerous cells multiply, they can undergo dramatic chromosomal changes, including chromosome loss, duplication, and the translocation of DNA from one chromosome to another. Chromosome aberrations have previously been detected using optical imaging of whole chromosomes, a technique with limited sensitivity, resolution, quantification, and throughput. Efforts in recent years to use microarrays to overcome these limitations have been hampered by inadequate sensitivity, specificity and flexibility of the microarray systems. The oligonucleotide CGH microarray system overcomes several scientific hurdles that have impeded comparative genomic studies of cancer. This new system can reliably detect single copy deletions in chromosomes. The system includes a whole human genome microarray, reagents for sample preparation, an optimized microarray processing protocol, and software for data analysis and visualization. In this study, we determined the sensitivity, accuracy and reproducibility of the new system. Using this assay, we find that the performance of the complete system was maintained over a range of input genomic DNA from 5 ug down to 0.15 ug.

  • PDF