• Title/Summary/Keyword: genome wide association study

Search Result 286, Processing Time 0.028 seconds

Genome-Wide Association Study between Copy Number Variation and Trans-Gene Expression by Protein-Protein Interaction-Network (단백질 상호작용 네트워크를 통한 유전체 단위반복변이와 트랜스유전자 발현과의 연관성 분석)

  • Park, Chi-Hyun;Ahn, Jae-Gyoon;Yoon, Young-Mi;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.18D no.2
    • /
    • pp.89-100
    • /
    • 2011
  • The CNV (Copy Number Variation) which is one of the genetic structural variations in human genome is closely related with the function of gene. In particular, the genome-wide association studies for genetic diseased persons have been researched. However, there have been few studies which infer the genetic function of CNV with normal human. In this paper, we propose the analysis method to reveal the functional relationship between common CNV and genes without considering their genomic loci. To achieve that, we propose the data integration method for heterogeneity biological data and novel measurement which can calculate the correlation between common CNV and genes. To verify the significance of proposed method, we has experimented several verification tests with GO database. The result showed that the novel measurement had enough significance compared with random test and the proposed method could systematically produce the candidates of genetic function which have strong correlation with common CNV.

Pathway Analysis of Metabolic Syndrome Using a Genome-Wide Association Study of Korea Associated Resource (KARE) Cohorts

  • Shim, Unjin;Kim, Han-Na;Sung, Yeon-Ah;Kim, Hyung-Lae
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.195-202
    • /
    • 2014
  • Metabolic syndrome (MetS) is a complex disorder related to insulin resistance, obesity, and inflammation. Genetic and environmental factors also contribute to the development of MetS, and through genome-wide association studies (GWASs), important susceptibility loci have been identified. However, GWASs focus more on individual single-nucleotide polymorphisms (SNPs), explaining only a small portion of genetic heritability. To overcome this limitation, pathway analyses are being applied to GWAS datasets. The aim of this study is to elucidate the biological pathways involved in the pathogenesis of MetS through pathway analysis. Cohort data from the Korea Associated Resource (KARE) was used for analysis, which include 8,842 individuals (age, $52.2{\pm}8.9years$ ; body mass index, $24.6{\pm}3.2kg/m^2$). A total of 312,121 autosomal SNPs were obtained after quality control. Pathway analysis was conducted using Meta-analysis Gene-Set Enrichment of Variant Associations (MAGENTA) to discover the biological pathways associated with MetS. In the discovery phase, SNPs from chromosome 12, including rs11066280, rs2074356, and rs12229654, were associated with MetS (p < $5{\times}10^{-6}$), and rs11066280 satisfied the Bonferroni-corrected cutoff (unadjusted p < $1.38{\times}10^{-7}$, Bonferroni-adjusted p < 0.05). Through pathway analysis, biological pathways, including electron carrier activity, signaling by platelet-derived growth factor (PDGF), the mitogen-activated protein kinase kinase kinase cascade, PDGF binding, peroxisome proliferator-activated receptor (PPAR) signaling, and DNA repair, were associated with MetS. Through pathway analysis of MetS, pathways related with PDGF, mitogen-activated protein kinase, and PPAR signaling, as well as nucleic acid binding, protein secretion, and DNA repair, were identified. Further studies will be needed to clarify the genetic pathogenesis leading to MetS.

Adjusting sampling bias in case-control genetic association studies

  • Seo, Geum Chu;Park, Taesung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1127-1135
    • /
    • 2014
  • Genome-wide association studies (GWAS) are designed to discover genetic variants such as single nucleotide polymorphisms (SNPs) that are associated with human complex traits. Although there is an increasing interest in the application of GWAS methodologies to population-based cohorts, many published GWAS have adopted a case-control design, which raise an issue related to a sampling bias of both case and control samples. Because of unequal selection probabilities between cases and controls, the samples are not representative of the population that they are purported to represent. Therefore, non-random sampling in case-control study can potentially lead to inconsistent and biased estimates of SNP-trait associations. In this paper, we proposed inverse-probability of sampling weights based on disease prevalence to eliminate a case-control sampling bias in estimation and testing for association between SNPs and quantitative traits. We apply the proposed method to a data from the Korea Association Resource project and show that the standard estimators applied to the weighted data yield unbiased estimates.

Comparison of the Affymetrix SNP Array 5.0 and Oligoarray Platforms for Defining CNV

  • Kim, Ji-Hong;Jung, Seung-Hyun;Hu, Hae-Jin;Yim, Seon-Hee;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.8 no.3
    • /
    • pp.138-141
    • /
    • 2010
  • Together with single nucleotide polymorphism (SNP), copy number variations (CNV) are recognized to be the major component of human genetic diversity and used as a genetic marker in many disease association studies. Affymetrix Genome-wide SNP 5.0 is one of the commonly used SNP array platforms for SNP-GWAS as well as CNV analysis. However, there has been no report that validated the accuracy and reproducibility of CNVs identified by Affymetrix SNP array 5.0. In this study, we compared the characteristics of CNVs from the same set of genomic DNAs detected by three different array platforms; Affymetrix SNP array 5.0, Agilent 2X244K CNV array and NimbleGen 2.1M CNV array. In our analysis, Affymetrix SNP array 5.0 seems to detect CNVs in a reliable manner, which can be applied for association studies. However, for the purpose of defining CNVs in detail, Affymetrix Genome-wide SNP 5.0 might be relatively less ideal than NimbleGen 2.1M CNV array and Agilent 2X244K CNV array, which outperform Affymetrix array for defining the small-sized single copy variants. This result will help researchers to select a suitable array platform for CNV analysis.

The identification of novel regions for reproduction trait in Landrace and Large White pigs using a single step genome-wide association study

  • Suwannasing, Rattikan;Duangjinda, Monchai;Boonkum, Wuttigrai;Taharnklaew, Rutjawate;Tuangsithtanon, Komson
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1852-1862
    • /
    • 2018
  • Objective: The purpose of this study was to investigate a single step genome-wide association study (ssGWAS) for identifying genomic regions affecting reproductive traits in Landrace and Large White pigs. Methods: The traits included the number of pigs weaned per sow per year (PWSY), the number of litters per sow per year (LSY), pigs weaned per litters (PWL), born alive per litters (BAL), non-productive day (NPD) and wean to conception interval per litters (W2CL). A total of 321 animals (140 Landrace and 181 Large White pigs) were genotyped with the Illumina Porcine SNP 60k BeadChip, containing 61,177 single nucleotide polymorphisms (SNPs), while multiple traits single-step genomic BLUP method was used to calculate variances of 5 SNP windows for 11,048 Landrace and 13,985 Large White data records. Results: The outcome of ssGWAS on the reproductive traits identified twenty-five and twenty-two SNPs associated with reproductive traits in Landrace and Large White, respectively. Three known genes were identified to be candidate genes in Landrace pigs including retinol binding protein 7, and ubiquitination factor E4B genes for PWL, BAL, W2CL, and PWSY and one gene, solute carrier organic anion transporter family member 6A1, for LSY and NPD. Meanwhile, five genes were identified to be candidate genes in Large White, two of which, aldehyde dehydrogenase 1 family member A3 and leucine rich repeat kinase 1, associated with all of six reproduction traits and three genes; retrotransposon Gag like 4, transient receptor potential cation channel subfamily C member 5, and LHFPL tetraspan subfamily member 1 for five traits except W2CL. Conclusion: The genomic regions identified in this study provided a start-up point for marker assisted selection and estimating genomic breeding values for improving reproductive traits in commercial pig populations.

Analysis of differences in human leukocyte antigen between the two Wellcome Trust Case Control Consortium control datasets

  • Jang, Chloe Soohyun;Choi, Wanson;Cook, Seungho;Han, Buhm
    • Genomics & Informatics
    • /
    • v.17 no.3
    • /
    • pp.29.1-29.8
    • /
    • 2019
  • The Wellcome Trust Case Control Consortium (WTCCC) study was a large genome-wide association study that aimed to identify common variants associated with seven diseases. That study combined two control datasets (58C and UK Blood Services) as shared controls. Prior to using the combined controls, the WTCCC performed analyses to show that the genomic content of the control datasets was not significantly different. Recently, the analysis of human leukocyte antigen (HLA) genes has become prevalent due to the development of HLA imputation technology. In this project, we extended the between-control homogeneity analysis of the WTCCC to HLA. We imputed HLA information in the WTCCC control dataset and showed that the HLA content was not significantly different between the two control datasets, suggesting that the combined controls can be used as controls for HLA fine-mapping analysis based on HLA imputation.

HisCoM-PCA: software for hierarchical structural component analysis for pathway analysis based using principal component analysis

  • Jiang, Nan;Lee, Sungyoung;Park, Taesung
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.11.1-11.3
    • /
    • 2020
  • In genome-wide association studies, pathway-based analysis has been widely performed to enhance interpretation of single-nucleotide polymorphism association results. We proposed a novel method of hierarchical structural component model (HisCoM) for pathway analysis of common variants (HisCoM for pathway analysis of common variants [HisCoM-PCA]) which was used to identify pathways associated with traits. HisCoM-PCA is based on principal component analysis (PCA) for dimensional reduction of single nucleotide polymorphisms in each gene, and the HisCoM for pathway analysis. In this study, we developed a HisCoM-PCA software for the hierarchical pathway analysis of common variants. HisCoM-PCA software has several features. Various principle component scores selection criteria in PCA step can be specified by users who want to summarize common variants at each gene-level by different threshold values. In addition, multiple public pathway databases and customized pathway information can be used to perform pathway analysis. We expect that HisCoM-PCA software will be useful for users to perform powerful pathway analysis.

Statistical models and computational tools for predicting complex traits and diseases

  • Chung, Wonil
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.36.1-36.11
    • /
    • 2021
  • Predicting individual traits and diseases from genetic variants is critical to fulfilling the promise of personalized medicine. The genetic variants from genome-wide association studies (GWAS), including variants well below GWAS significance, can be aggregated into highly significant predictions across a wide range of complex traits and diseases. The recent arrival of large-sample public biobanks enables highly accurate polygenic predictions based on genetic variants across the whole genome. Various statistical methodologies and diverse computational tools have been introduced and developed to computed the polygenic risk score (PRS) more accurately. However, many researchers utilize PRS tools without a thorough understanding of the underlying model and how to specify the parameters for the best performance. It is advantageous to study the statistical models implemented in computational tools for PRS estimation and the formulas of parameters to be specified. Here, we review a variety of recent statistical methodologies and computational tools for PRS computation.

Identification of genes related to intramuscular fat content of pigs using genome-wide association study

  • Won, Sohyoung;Jung, Jaehoon;Park, Eungwoo;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.157-162
    • /
    • 2018
  • Objective: The aim of this study is to identify single nucleotide polymorphisms (SNPs) and genes related to pig IMF and estimate the heritability of intramuscular fat content (IMF). Methods: Genome-wide association study (GWAS) on 704 inbred Berkshires was performed for IMF. To consider the inbreeding among samples, associations of the SNPs with IMF were tested as random effects in a mixed linear model using the genetic relationship matrix by GEMMA. Significant genes were compared with reported pig IMF quantitative trait loci (QTL) regions and functional classification of the identified genes were also performed. Heritability of IMF was estimated by GCTA tool. Results: Total 365 SNPs were found to be significant from a cutoff of p-value <0.01 and the 365 significant SNPs were annotated across 120 genes. Twenty five genes were on pig IMF QTL regions. Bone morphogenetic protein-binding endothelial cell precursor-derived regulator, forkhead box protein O1, ectodysplasin A receptor, ring finger protein 149, cluster of differentiation, tyrosine-protein phosphatase non-receptor type 1, SRY (sex determining region Y)-box 9 (SOX9), MYC proto-oncogene, and macrophage migration inhibitory factor were related to mitogen-activated protein kinase pathway, which regulates the differentiation to adipocytes. These genes and the genes mapped on QTLs could be the candidate genes affecting IMF. Heritability of IMF was estimated as 0.52, which was relatively high, suggesting that a considerable portion of the total variance of IMF is explained by the SNP information. Conclusion: Our results can contribute to breeding pigs with better IMF and therefore, producing pork with better sensory qualities.

A genome-wide association study of reproduction traits in four pig populations with different genetic backgrounds

  • Jiang, Yao;Tang, Shaoqing;Xiao, Wei;Yun, Peng;Ding, Xiangdong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1400-1410
    • /
    • 2020
  • Objective: Genome-wide association study and two meta-analysis based on GWAS performed to explore the genetic mechanism underlying variation in pig number born alive (NBA) and total number born (TNB). Methods: Single trait GWAS and two meta-analysis (single-trait meta analysis and multi-trait meta analysis) were used in our study for NBA and TNB on 3,121 Yorkshires from 4 populations, including three different American Yorkshire populations (n = 2,247) and one British Yorkshire populations (n = 874). Results: The result of single trait GWAS showed that no significant associated single nucleotide polymorphisms (SNPs) were identified. Using single-trait meta analysis and multi-trait meta analysis within populations, 11 significant loci were identified associated with target traits. Spindlin 1, vascular endothelial growth factor A, forkhead box Q1, msh homeobox 1, and LHFPL tetraspan submily member 3 are five functionally plausible candidate genes for NBA and TNB. Compared to the single population GWAS, single-trait Meta analysis can improve the detection power to identify SNPs by integrating information of multiple populations. The multiple-trait analysis reduced the power to detect trait-specific loci but enhanced the power to identify the common loci across traits. Conclusion: In total, our findings identified novel genes to be validated as candidates for NBA and TNB in pigs. Also, it enabled us to enlarge population size by including multiple populations with different genetic backgrounds and increase the power of GWAS by using meta analysis.