• Title/Summary/Keyword: genome structure

Search Result 440, Processing Time 0.032 seconds

Molecular Evidence for the Presence of CYP2E1 Retropseudogene in Human Genome (사람의 게놈에 존재하는 Cytochrome P450 2E1의 Retropseudogene에 대한 분자유전학적 증거)

  • Yoo, Min;Shin, Song-Woo
    • Biomedical Science Letters
    • /
    • v.4 no.2
    • /
    • pp.129-135
    • /
    • 1998
  • We have carried out polymerase chain reaction (PCR) to investigate if retropseudogene for CYP2El is present in human genome. PCR primers were designed based on the structure of functional CYP2El gene and used to amplify both functional gene and retropseudogene in one reaction. From the repeated experiments we were able to amplify a previously unidentified CYP2El retropseudogene that was present in human genome. Its detailed structure was confirmed by Southern blotting and DNA sequencing. Nucleotide sequence of this retropseudogene was completely matched up to human liver CYP2El mRNA suggesting that the development of this retropseudogene might be a relatively recent event.

  • PDF

Systematic Analysis of the Anticancer Agent Taxol-Producing Capacity in Colletotrichum Species and Use of the Species for Taxol Production

  • Choi, Jinhee;Park, Jae Gyu;Ali, Md. Sarafat;Choi, Seong-Jin;Baek, Kwang-Hyun
    • Mycobiology
    • /
    • v.44 no.2
    • /
    • pp.105-111
    • /
    • 2016
  • Paclitaxel (taxol) has long been used as a potent anticancer agent for the treatment of many cancers. Ever since the fungal species Taxomyces andreanae was first shown to produce taxol in 1993, many endophytic fungal species have been recognized as taxol accumulators. In this study, we analyzed the taxol-producing capacity of different Colletotrichum spp. to determine the distribution of a taxol biosynthetic gene within this genus. Distribution of the taxadiene synthase (TS) gene, which cyclizes geranylgeranyl diphosphate to produce taxadiene, was analyzed in 12 Colletotrichum spp., of which 8 were found to contain the unique skeletal core structure of paclitaxel. However, distribution of the gene was not limited to closely related species. The production of taxol by Colletotrichum dematium, which causes pepper anthracnose, depended on the method in which the fungus was stored, with the highest production being in samples stored under mineral oil. Based on its distribution among Colletotrichum spp., the TS gene was either integrated into or deleted from the bacterial genome in a species-specific manner. In addition to their taxol-producing capacity, the simple genome structure and easy gene manipulation of these endophytic fungal species make them valuable resources for identifying genes in the taxol biosynthetic pathway.

3' end of putative sequences of the packaging signal in moloney-murine leukemia virus (Moloney murine Leukemia Virus에서 포장신호의 가능한 3' 끝의 염기서열)

  • 박종상
    • Korean Journal of Microbiology
    • /
    • v.26 no.2
    • /
    • pp.101-105
    • /
    • 1988
  • 6M-MuLV mutants containing deldtions around the putative packaging signal were constructed by using recombinant DNA technique and transfected into NIH/3T3 cell. 2 of 6 mutants can not be packaged into virions even in the presence of the wild type helper virus. The boundary between the packagible and the non-packagible genome is located around Pvu I site, 421 nucleotide downstream from the 5' end of M-MuLV genome. 10 base pair inverted repeat sequence (GAGUCCAAAA) which can make stem structure around Pvu Isite could be the putative packaging signal.

  • PDF

Lessons from the Sea : Genome Sequence of an Algicidal Marine Bacterium Hahella chehuensis (적조 살상 해양 미생물 Hahella chejuensis의 유전체 구조)

  • Jeong Hae-Young;Yoon Sung-Ho;Lee Hong-Kum;Oh Tae-Kwang;Kim Ji-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Harmful algal blooms (HABs or red tides), caused by uncontrolled proliferation of marine phytoplankton, impose a severe environmental problem and occasionally threaten even public health. We sequenced the genome of an EPS-producing marine bacterium Hahella chejuensis that produces a red pigment with the lytic activity against red-tide dinoflagellates at parts per billion level. H. chejuensis is the first sequenced species among algicidal bacteria as well as in the order Oceanospirillales. Sequence analysis indicated a distant relationship to the Pseudomonas group. Its 7.2-megabase genome encodes basic metabolic functions and a large number of proteins involved in regulation or transport. One of the prominent features of the H. chejuensis genome is a multitude of genes of functional equivalence or of possible foreign origin. A significant proportion (${\sim}23%$) of the genome appears to be of foreign origin, i.e. genomic islands, which encode genes for biosynthesis of exopolysaccharides, toxins, polyketides or non-ribosomal peptides, iron utilization, motility, type III protein secretion and pigment production. Molecular structure of the algicidal pigment was determined to be prodigiosin by LC-ESI-MS/MS and NMR analyses. The genomics-based research on H. chejuensis opens a new possibility for controlling algal blooms by exploiting biotic interactions in the natural environment and provides a model in marine bioprospecting through genome research.

The complete chloroplast genome sequence of Avena sterilis L. using Illumina sequencing

  • Raveendar, Sebastin;Lee, Gi-An;Lee, Kyung Jun;Shin, Myoung-Jae;Cho, Yang-Hee;Ma, Kyung-Ho;Chung, Jong-Wook;Lee, Jung-Ro
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.139-139
    • /
    • 2017
  • The complete chloroplast genome sequence of Avena sterilis L., a dominant wild oat species in the family Poaceae, is first reported in this study. The complete cp genome sequence of A. sterilis is 135,887 bp in length with 38.5% overall GC content and exhibits a typical quadripartite structure comprising one pair of inverted repeats (21, 603 bp) separated by a small single-copy region (12,575 bp) and a large single-copy region (80,106). The A. sterilis cp genome encodes 111 unique genes, 76 of which are protein-coding genes, 4 rRNA genes, 30 tRNA genes and 18 duplicated genes in the inverted repeat region. Nine genes contain one or two introns. Pair-wise alignments of cp genome were performed for genome-wide comparison. This newly determined cp genome sequence of A. sterilis will provide valuable information for the future breeding programs of valuable cereal crops in the family Poaceae.

  • PDF

Development and characterization of nine microsatellite loci from the Korean hare (Lepus coreanus) and genetic diversity in South Korea

  • Kim, Sang-In;An, Jung-Hwa;Choi, Sung-Kyoung;Lee, Yun-Sun;Park, Han-Chan;Kimura, Junpei;Kim, Kyung-Seok;Min, Mi-Sook;Lee, Hang
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.230-236
    • /
    • 2012
  • The Korean hare, Lepus coreanus, is an important mammal in ecosystem food chains, and is distributed across the entire Korean peninsula and northeastern China. Polymorphic microsatellite loci were developed using the biotinenrichment technique for use in population genetics studies. Five trinucleotide and four dinucleotide microsatellite loci were selected and tested on 22 Korean hare specimens collected from Gangwon Province and Gyeongsangbuk Province in South Korea. The number of alleles across the two sampling regions ranged from three to nine with a mean of 6.1. Mean observed and expected heterozygosities and polymorphic information content were 0.540, 0.627 and 0.579, respectively. Only one locus, Lc06, showed departure from Hardy-Weinberg equilibrium after applying the Bonferroni correction. Four microsatellites, Lc01, Lc03, Lc12, and Lc19, satisfied the criteria to serve as a core set of markers recommended for population genetics studies. These new microsatellite markers will be widely applicable to future genetic studies for management and conservation of the Korean hare and related species, including assessment of the genetic diversity and population structure of L. coreanus.

Complete Sequence of the Mitochondrial Genome of Spirometra ranarum: Comparison with S. erinaceieuropaei and S. decipiens

  • Jeon, Hyeong-Kyu;Park, Hansol;Lee, Dongmin;Choe, Seongjun;Kang, Yeseul;Bia, Mohammed Mebarek;Lee, Sang-Hwa;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.1
    • /
    • pp.55-60
    • /
    • 2019
  • This study was undertaken to determine the complete mitochondrial DNA sequence and structure of the mitochondrial genome of Spirometra ranarum, and to compare it with those of S. erinaceieuropaei and S. decipiens. The aim of this study was to provide information of the species level taxonomy of Spirometra spp. using the mitochondrial genomes of 3 Spirometra tapeworms. The S. ranarum isolate originated from Myanmar. The mitochondrial genome sequence of S. ranarum was compared with that of S. erinaceieuropaei (GenBank no. KJ599680) and S. decipiens (GenBank no. KJ599679). The complete mtDNA sequence of S. ranarum comprised 13,644 bp. The S. ranarum mt genome contained 36 genes comprising 12 protein-coding genes, 22 tRNAs and 2 rRNAs. The mt genome lacked the atp8 gene, as found for other cestodes. All genes in the S. ranarum mitochondrial genome are transcribed in the same direction and arranged in the same relative position with respect to gene loci as found for S. erinaceieuropaei and S. decipiens mt genomes. The overall nucleotide sequence divergence of 12 protein-coding genes between S. ranarum and S. decipiens differed by 1.5%, and 100% sequence similarity was found in the cox2 and nad6 genes, while the DNA sequence divergence of the cox1, nad1, and nad4 genes of S. ranarum and S. decipiens was 2.2%, 2.1%, and 2.6%, respectively.

Determining differentially expressed genes in a microarray expression dataset based on the global connectivity structure of pathway information

  • Chung, Tae-Su;Kim, Kee-Won;Lee, Hye-Won;Kim, Ju-Han
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.124-130
    • /
    • 2004
  • Microarray expression datasets are incessantly cumulated with the aid of recent technological advances. One of the first steps for analyzing these data under various experimental conditions is determining differentially expressed genes (DEGs) in each condition. Reasonable choices of thresholds for determining differentially expressed genes are used for the next -step-analysis with suitable statistical significances. We present a model for identifying DEGs using pathway information based on the global connectivity structure. Pathway information can be regarded as a collection of biological knowledge, thus we are tying to determine the optimal threshold so that the consequential connectivity structure can be the most compatible with the existing pathway information. The significant feature of our model is that it uses established knowledge as a reference to determine the direction of analyzing microarray dataset. In the most of previous work, only intrinsic information in the miroarray is used for the identifying DEGs. We hope that our proposed method could contribute to construct biologically meaningful network structure from microarray datasets.

  • PDF

Diversity and Genotypic Structure of ECOR Collection Determined by Repetitive Extragenic Palindromic PCR Genome Fingerprinting

  • HWANG KEUM-OK;JANG HYO-MI;CHO JAE-CHANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.672-677
    • /
    • 2005
  • The standard reference collection of strains for E. coli, the ECOR collection, was analyzed by a genome-based typing method. Seventy-one ECOR strains were subjected to repetitive extragenic palindromic PCR genome fingerprinting with BOX primers (BOX-PCR). Using a similarity value of 0.8 or more after cluster analysis of BOX-PCR fingerprinting patterns to define the same genotypes, we identified 28 genotypes in the ECOR collection. Shannon's entropy-based diversity index was 3.07, and the incident-based coverage estimator indicated potentially 420 genotypes among E. coli populations. Chi-square test of goodness-of-fit showed statistically significant association between the genotypes defined by BOX-PCR fingerprinting and the groups previously defined by multi-locus enzyme electrophoresis. This study suggests that the diversification of E. coli strains in natural populations is actively ongoing, and rep-PCR fingerprinting is a convenient and reliable method to type E. coli strains for the purposes ranging from ecology to quarantine.ine.

Compiling Multicopy Single-Stranded DNA Sequences from Bacterial Genome Sequences

  • Yoo, Wonseok;Lim, Dongbin;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.14 no.1
    • /
    • pp.29-33
    • /
    • 2016
  • A retron is a bacterial retroelement that encodes an RNA gene and a reverse transcriptase (RT). The former, once transcribed, works as a template primer for reverse transcription by the latter. The resulting DNA is covalently linked to the upstream part of the RNA; this chimera is called multicopy single-stranded DNA (msDNA), which is extrachromosomal DNA found in many bacterial species. Based on the conserved features in the eight known msDNA sequences, we developed a detection method and applied it to scan National Center for Biotechnology Information (NCBI) RefSeq bacterial genome sequences. Among 16,844 bacterial sequences possessing a retron-type RT domain, we identified 48 unique types of msDNA. Currently, the biological role of msDNA is not well understood. Our work will be a useful tool in studying the distribution, evolution, and physiological role of msDNA.