• 제목/요약/키워드: genome engineering

검색결과 621건 처리시간 0.034초

HPC 환경을 위한 워크플로우 기반의 바이오 데이터 분석 시스템 (Workflow-based Bio Data Analysis System for HPC)

  • 안신영;김병섭;최현화;전승협;배승조;최완
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권2호
    • /
    • pp.97-106
    • /
    • 2013
  • 인간 게놈 프로젝트의 완성 이후 유전체 분석 비용은 매우 빠르게 감소하고 있다. 이에 따라 인간 유전체 분석 요구가 급증할 것으로 예상된다. 인간 유전체 분석과 같은 대규모 바이오 데이터 분석을 고속으로 수행하기 위해서는 비IT 전문가들이 다양한 특성의 바이오 응용들을 고성능컴퓨팅 시스템을 통해 효과적으로 실행할 수 있어야 한다. 이를 위해서는 여러 응용들이 조합되어 순서를 갖고 실행되어야 하는 바이오 응용들을 워크플로우 형태로 쉽게 정의할 수 있어야 하며, 이 워크플로우를 HPC 클러스터 시스템에서 최적 자원을 할당 받아 분산 병렬 수행시켜야 한다. 이를 통해 바이오 데이터 분석 성능과 응답시간의 개선을 기대할 수 있다. 본 논문에서는 HPC 환경에 익숙하지 않은 비IT 바이오 연구자들이 쉽게 바이오 데이터 분석을 할 수 있도록 바이오 워크플로우를 쉽게 정의하고 실행할 수 있는 바이오 특화된 워크플로우 기반 대규모 데이터 분석 시스템을 제안한다.

Microbial Biotechnology Powered by Genomics, Proteomics, Metabolomics and Bioinformatics

  • Lee, Sang-Yup
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2000년도 International Symposium on Bioinformatics
    • /
    • pp.13-16
    • /
    • 2000
  • Microorganisms have been widely employed for the production of useful bioproducts including primary metabolites such as ethanol, succinic acid, acetone and butanol, secondary metabolites represented by antibiotics, proteins, polysaccharides, lipids and many others. Since these products can be obtained in small quantities under natural condition, mutation and selection processes have been employed for the improvement of strains. Recently, metabolic engineering strategies have been employed for more efficient production of these bioproducts. Metabolic engineering can be defined as purposeful modification of cellular metabolic pathways by introducing new pathways, deleting or modifying the existing pathways for the enhanced production of a desired product or modified/new product, degradation of xenobiotics, and utilization of inexpensive raw materials. Metabolic flux analysis and metabolic control analysis along with recombinant DNA techniques are three important components in designing optimized metabolic pathways, This powerful technology is being further improved by the genomics, proteomics, metabolomics and bioinformatics. Complete genome sequences are providing us with the possibility of addressing complex biological questions including metabolic control, regulation and flux. In silico analysis of microbial metabolic pathways is possible from the completed genome sequences. Transcriptome analysis by employing ONA chip allows us to examine the global pattern of gene expression at mRNA level. Two dimensional gel electrophoresis of cellular proteins can be used to examine the global proteome content, which provides us with the information on gene expression at protein level. Bioinformatics can help us to understand the results obtained with these new techniques, and further provides us with a wide range of information contained in the genome sequences. The strategies taken in our lab for the production of pharmaceutical proteins, polyhydroxyalkanoate (a family of completely biodegradable polymer), succinic acid and me chemicals by employing metabolic engineering powered by genomics, proteomics, metabolomics and bioinformatics will be presented.

  • PDF

Identification of Genetic Variations in CBL, SORBS1, CRK, and RHOQ, Key Modulators in the CAP/TC10 Pathway of Insulin Signal Transduction, and Their Association with Type 2 Diabetes Mellitus in the Korean Population

  • Hong, Kyung-Won;Jin, Hyun-Seok;Lim, Ji-Eun;Go, Min-Jin;Lee, Jong-Young;Hwang, Sue-Yun;Park, Hun-Kuk;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • 제7권2호
    • /
    • pp.53-56
    • /
    • 2009
  • Recent evidence has strongly suggested that the CAP/TC10 pathway is involved in the trafficking, docking, and fusion of vesicles containing the insulin-responsive glucose transporter Glut4 to the plasma membrane. However, little is known about how the genes employed in the CAP/TC10 pathway are associated with the development of type 2 diabetes mellitus. In this study, we sequenced 4 genes of the CAP/TC10 pathway [SORBS1, CBL, CRK, and RHOQ] in 24 individuals to identify genetic variations in these loci. A total of 48 sequence variants were identified, including 23 novel variations. To investigate the possible association with type 2 diabetes mellitus, 3 single nucleotide polymorphisms from SORBS1, 3 from CBL, and 4 from RHOQ were genotyped in 1122 Korean type 2 diabetic patients and 1138 nondiabetic controls. Using logistic regression analysis, 1 significant association between SNP rs1376405 in RHOQ and type 2 diabetes mellitus [OR = 8.714 (C.I. 1.714-44.29), p = 0.009] was found in the recessive model. Our data demonstrate a positive association of the RHOQ gene in the CAP/TC10 pathway with T2DM in the Korean population.

Association between Prostaglandin-endoperoxide Synthase 2 (PTGS2) Polymorphisms and Blood Pressure in Korean Population

  • Jin, Hyun-Seok;Hong, Kyung-Won;Lim, Ji-Eun;Han, Hye-Ree;Lee, Jong-Young;Park, Hun-Kuk;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • 제6권3호
    • /
    • pp.110-116
    • /
    • 2008
  • Blood pressure refers to the force exerted by circulating blood on the walls of blood vessels, and chronical elevation of blood pressure is known as hypertension. Although hypertension is affected by genetic and environmental factors, the genetic background of hypertension is not fully understood. One of the candidate genetic factors, Prostaglandin-endoperoxide synthase 2 (PTGS2), is a membrane-bound enzyme, catalyzing the conversion of arachidonic acid to prostaglandin, and recently SNPs of PTGS2 gene was associated with hypertension in Japanese population. Therefore the association of PTGS2 polymorphisms was investigated with blood pressure in healthy Korean subjects, 470 unrelated individuals randomly selected from Ansung and Ansan cohorts. The 25 SNPs of PTGS2 gene were identified by the sequencing analysis of 24 Korean samples. Among identified polymorphisms, three SNPs (rs689466, -1329A>G; rs5275, +6365T>C; rs4648308, +8806G> A) were selected for further association analysis, and rs689466 located in promoter region was associated with blood pressure as well as triglyceride level in the blood. By in silico analysis, rs689466 locates in v-Myb transcription factor binding site, and the v-Myb site disappears when the SNP is changed from A to G nucleotide. Individuals with A/G and G/G genotype in rs689466 have higher blood pressure than those with A/A genotype, and the regression p-value is 0.008 for systolic and 0.004 for diastolic blood pressure. In summary, the PTGS2 polymorphism (rs689466) is associated with blood pressure in Asian populations based on this and Japanese studies, shedding light on it as a genetic risk marker of hypertension.

Genome-Based Reclassification of Strain KIST612, Previously Classified as Eubacterium limosum, into a New Strain of Eubacterium callanderi

  • Ji-Yeon Kim;Byeongchan Kang;Soyoung Oh;Yeji Gil;In-Geol Choi;In Seop Chang
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권8호
    • /
    • pp.1084-1090
    • /
    • 2023
  • The strain KIST612, initially identified as E. limosum, was a suspected member of E. callanderi due to differences in phenotype, genotype, and average nucleotide identity (ANI). Here, we found that E. limosum ATCC 8486T and KIST612 are genetically different in their central metabolic pathways, such as that of carbon metabolism. Although 16S rDNA sequencing of KIST612 revealed high identity with E. limosum ATCC 8486T (99.2%) and E. callanderi DSM 3662T (99.8%), phylogenetic analysis of housekeeping genes and genome metrics clearly indicated that KIST612 belongs to E. callanderi. The phylogenies showed that KIST612 is closer to E. callanderi DSM 3662T than to E. limosum ATCC 8486T. The ANI between KIST612 and E. callanderi DSM 3662T was 99.8%, which was above the species cut-off of 96%, Meanwhile, the ANI value with E. limosum ATCC 8486T was not significant, showing only 94.6%. The digital DNA-DNA hybridization (dDDH) results also supported the ANI values. The dDDH between KIST612 and E. callanderi DSM 3662T was 98.4%, whereas between KIST612 and E. limosum ATCC 8486T , it was 57.8%, which is lower than the species cut-off of 70%. Based on these findings, we propose the reclassification of E. limosum KIST612 as E. callanderi KIST612.

Genome Analysis and Optimization of Caproic Acid Production of Clostridium butyricum GD1-1 Isolated from the Pit Mud of Nongxiangxing Baijiu

  • Min Li;Tao Li;Jia Zheng;Zongwei Qiao;Kaizheng Zhang;Huibo Luo;Wei Zou
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1337-1350
    • /
    • 2023
  • Caproic acid is a precursor substance for the synthesis of ethyl caproate, the main flavor substance of nongxiangxing baijiu liquor. In this study, Clostridium butyricum GD1-1, a strain with high caproic acid concentration (3.86 g/l), was isolated from the storage pit mud of nongxiangxing baijiu for sequencing and analysis. The strain's genome was 3,840,048 bp in length with 4,050 open reading frames. In addition, virulence factor annotation analysis showed C. butyricum GD1-1 to be safe at the genetic level. However, the annotation results using the Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server predicted a deficiency in the strain's synthesis of alanine, methionine, and biotin. These results were confirmed by essential nutrient factor validation experiments. Furthermore, the optimized medium conditions for caproic acid concentration by strain GD1-1 were (g/l): glucose 30, NaCl 5, yeast extract 10, peptone 10, beef paste 10, sodium acetate 11, L-cysteine 0.6, biotin 0.004, starch 2, and 2.0% ethanol. The optimized fermentation conditions for caproic acid production by C. butyricum GD1-1 on a single-factor basis were: 5% inoculum volume, 35℃, pH 7, and 90% loading volume. Under optimal conditions, the caproic acid concentration of strain GD1-1 reached 5.42 g/l, which was 1.40 times higher than the initial concentration. C. butyricum GD1-1 could be further used in caproic acid production, NXXB pit mud strengthening and maintenance, and artificial pit mud preparation.

애기장대 Nit유전자 발현 오이 형질전환체 개발 (Development of transgenic cucumbers expressing Arabidopsis Nit gene)

  • 장현아;임가민;김현아;박연일;권석윤;최필선
    • Journal of Plant Biotechnology
    • /
    • 제40권4호
    • /
    • pp.198-202
    • /
    • 2013
  • 환경스트레스 저항성 오이 형질전환체 생산을 위해서 오이 "Eunsung" 품종의 자엽절 절편을 Nit유전자를 포함하는 pPZP211와 pCAMBIA2300 발현벡터로 각각 형질전환된 Agrobacterium과 공동 배양하였다. 공동배양 후 형질전환체 선발, 형질전환체 유도, 신장, 유식물체 생산 등은 자엽절 절편을 이용하는 CTM방법(Jang et al. 2011)에 따라 수행하였다. 발현벡터에 따라 선발배지에 100 mg/L paromomycin을 첨가하여 선발과정을 거쳤으며, 선발배지에서 3 cm크기의 shoot를 유도한 후 PCR, Southern, RT-PCR 및 Northern분석을 통해 형질전환 여부를 확인하였다. 공동배양 한 2,547개의 자엽절 절편으로부터 105개체(4.12%)가 선발배지로부터 얻어졌으며, 그들 중 45개체(1.77%)만이 Nit유전자의 PCR product를 얻을 수 있었다. 오이 genome에 Nit유전자의 도입여부를 확인하기 위하여 45개체에 대한 Southern분석을 수행한 결과 각각 39개체(1.53%)서 확인할 수 있었으며, 이중 오직 6개체(0.24%)에서만 Nit유전자가 안정적으로 발현되고 있음을 RT-PCR과 Northern분석을 통해 확인하였다. 이러한 결과는 Nit유전자가 오이 genome에 안정적으로 도입 및 발현되고 있음을 보여 주고 있음을 알 수 있었다.

Resources for Systems Biology Research

  • Kim Jin-Sik;Yun Hong-Seok;Kim Hyun-Uk;Choi Hyung-Seok;Kim Tae-Yong;Woo Han-Min;Lee Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.832-848
    • /
    • 2006
  • Systems biology has recently become an important research paradigm that is anticipated to decipher the metabolic, regulatory, and signaling networks of complex living organisms on the whole organism level. Thus, various research outputs are being generated, along with the development of many tools and resources for systems biology research. Accordingly, this review provides a comprehensive summary of the current resources and tools for systems biology research that will hopefully be helpful to researchers involved in this field. The resources are categorized into the following five groups: genome information and analysis, transcriptome and proteome databases, metabolic profiling and metabolic control analysis, metabolic and regulatory information, and software for computational systems biology. A summary table and some future perspectives are also provided.

유전체 연구용 그리딩 로봇 시스템의 개발 (Development of Gridding Robot System for Genome Research)

  • 추창환;서동현;김찬수;박지영;임용표;김기대
    • Journal of Biosystems Engineering
    • /
    • 제26권4호
    • /
    • pp.391-398
    • /
    • 2001
  • A robot system for clone replication and gridding, which is a preliminary state of the genome research, was developed and evaluated its performance. This gridding robot system consisted of 1) a gridding heat that replicated the clone, 2) a manipulator, as a part of body of robot, which transferred the gridding head along x-, y-, z-axis, 3) a well plate arranging board, 4) a sterilization unit, and 5) a control unit. Performance of the system was evaluated with 1) repeatability of the robot system, 2) clone replication efficiency, 3) time requirement of the replication, and 4) sterilization efficiency. The repeatability error of the robot system showed 0.219 mm and 0.094 mm in the direction of x- and y-axis, respectively. The success rate of the clone replication with the gridding head was 100% on the membrane filter. The time required for the replication was four minutes and fifty-five seconds from the four 96 well plates to a 384 well plate meanwhile the required time with well experienced hand labor was three minutes thirty-five seconds. The gridding operation of clone could not be done by hand labor and the required time with robot system for the gridding on the membrance filter with the control program 5$\times$5: 1 copy and 384 gridding pins was twenty minutes and twenty-five seconds. The efficiency of the sterilization was considered to be satisfactory since no growth of fungi was found around the area of replication in the membrane filter.

  • PDF