• Title/Summary/Keyword: genetic process

Search Result 1,495, Processing Time 0.027 seconds

A V­Groove $CO_2$ Gas Metal Arc Welding Process with Root Face Height Using Genetic Algorithm

  • Ahn, S.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.15-23
    • /
    • 2003
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed, root opening and the output variables were bead height, bead width, penetration and back bead width. The number of level for each input variable is 8, 16, 8 and 3, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 3,072 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 48 experiments.

  • PDF

Determination on Optima Condition for a Gas Metal Arc Welding Process Using Genetic Algorithm (유전 알고리즘을 이용한 가스 메탈 아크 용접 공정의 최적 조건 설정에 관한 연구)

  • 김동철;이세헌
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.63-69
    • /
    • 2000
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables was wire feed rate, welding voltage, and welding speed and the output variables were bead height, bead width, and penetration. The number of level for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 40 experiments.

  • PDF

Determination of optimal Conditions for a Gas Metal Arc Wending Process Using the Genetic Algorithm

  • Kim, D.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • A genetic algorithm was applied to the arc welding process as to determine the near-optimal settings of welding process parameters that produce the good weld quality. This method searches for optimal settings of welding parameters through the systematic experiments without the need for a model between the input and output variables. It has an advantage of being capable to find the optimal conditions with a fewer number of experiments rather than conventional full factorial designs. A genetic algorithm was applied to the optimization of the weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed. The output variables were the bead height bead width, and penetration. The number of levels for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions,2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions in less than 40 experiments.

  • PDF

Real-coded genetic algorithm for identification of time-delay process

  • Shin, Gang-Wook;Lee, Tae-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1645-1650
    • /
    • 2005
  • FOPDT(First-Order Plus Dead-Time) and SOPDT(Second-Order Plus Dead-Time) process, which are used as the most useful process in industry, are difficult about process identification because of the long dead-time problem and the model mismatch problem. Thus, the accuracy of process identification is the most important problem in FOPDT and SOPDT process control. In this paper, we proposed the real-coded genetic algorithm for identification of FOPDT and SOPDT processes. The proposed method using real-coding genetic algorithm shows better performance characteristic comparing with the existing an area-based identification method and a directed identification method that use step-test responses. The proposed strategy obtained useful result through a number of simulation examples.

  • PDF

A Strategy of modeling for fermentation process by using genetic-fuzzy system

  • Na, Jeong-Geol;Lee, Tae-Hwa;Jang, Yong-Geun;Jeong, Bong-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.177-180
    • /
    • 2000
  • An algorithm for modeling of yeast fermentation process using genetic-fuzzy algorithm is presented in this work. The algorithm involves developing the fuzzy modeling of the process and model update capability against the system change. The membership functions of state variables and specific rates and the decision table were generated using genetic algorithm. This algorithm could replace the complex mathematical model to simple fuzzy model and cope with the change of process characteristics well.

  • PDF

A Study on Optimal Process Design of Hydroforming Process with n Genetic Algorithm and Neural Network (Genetic Algorithm과 Neural Network을 이용한 Tube Hydroforming의 성형공정 최적화에 대한 연구)

  • 양재봉;전병희;오수익
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.644-652
    • /
    • 2000
  • Tube hydroforming is recently drawing attention of automotive industries due to its several advantages over conventional methods. It can produce wide range of products such as subframes, engine cradles, and exhaust manifolds with cheaper production cost by reducing overall number of processes. h successful tube hydroforming depends on the reasonable combination of the internal pressure and axial load at the tube ends. This paper deals with the optimal process design of hydroforming process using the genetic algorithm and neural network. An optimization technique is used in order to minimize the tube thickness variation by determining the optimal loading path in the tube expansion forming and the tube T-shape forming process.

  • PDF

A Handling Method of Linear Constraints for the Genetic Algorithm (유전알고리즘에서 선형제약식을 다루는 방법)

  • Sung, Ki-Seok
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.37 no.4
    • /
    • pp.67-72
    • /
    • 2012
  • In this paper a new method of handling linear constraints for the genetic algorithm is suggested. The method is designed to maintain the feasibility of offsprings during the evolution process of the genetic algorithm. In the genetic algorithm, the chromosomes are coded as the vectors in the real vector space constrained by the linear constraints. A method of handling the linear constraints already exists in which all the constraints of equalities are eliminated so that only the constraints of inequalities are considered in the process of the genetic algorithm. In this paper a new method is presented in which all the constraints of inequalities are eliminated so that only the constraints of equalities are considered. Several genetic operators such as arithmetic crossover, simplex crossover, simple crossover and random vector mutation are designed so that the resulting offspring vectors maintain the feasibility subject to the linear constraints in the framework of the new handling method.

Process Optimization Formulated in GDP/MINLP Using Hybrid Genetic Algorithm (혼합 유전 알고리즘을 이용한 GDP/MINLP로 표현된 공정 최적화)

  • 송상옥;장영중;김구회;윤인섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.168-175
    • /
    • 2003
  • A new algorithm based on Genetic Algorithms is proposed f3r solving process optimization problems formulated in MINLP, GDP and hybrid MINLP/GDP. This work is focused especially on the design of the Genetic Algorithm suitable to handle disjunctive programming with the same level of MINLP handling capability. Hybridization with the Simulated Annealing is experimented and many heuristics are adopted. Real and binary coded Genetic Algorithm initiates the global search in the entire search space and at every stage Simulated Annealing makes the candidates to climb up the local hills. Multi-Niche Crowding method is adopted as the multimodal function optimization technique. and the adaptation of probabilistic parameters and dynamic penalty systems are also implemented. New strategies to take the logical variables and constraints into consideration are proposed, as well. Various test problems selected from many fields of process systems engineering are tried and satisfactory results are obtained.

Design of a Fuzzy Controller Using Genetic Algorithm Employing Simulated Annealing and Random Process (Simulated Annealing과 랜덤 프로세서가 적용된 유전 알고리즘을 이용한 퍼지 제어기의 설계)

  • 한창욱;박정일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.140-140
    • /
    • 2000
  • Traditional genetic algorithms, though robust, are generally not the most successful optimization algorithm on any particular domain. Hybridizing a genetic algorithm with other algorithms can produce better performance than both the genetic algorithm and the other algorithms. In this paper, we use random process and simulated annealing instead of mutation operator in order to get well tuned fuzzy rules. The key of this approach is to adjust both the width and the center of membership functions so that the tuned rule-based fuzzy controller can generate the desired performance. The effectiveness of the proposed algorithm is verified by computer simulation.

  • PDF

Vehicle Routing Problems with Time Window Constraints by Using Genetic Algorithm (유전자 알고리즘을 이용한 시간제약 차량경로문제)

  • Jeon, Geon-Wook;Lee, Yoon-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.4
    • /
    • pp.75-82
    • /
    • 2006
  • The main objective of this study is to find out the shortest path of the vehicle routing problem with time window constraints by using both genetic algorithm and heuristic. Hard time constraints were considered to the vehicle routing problem in this suggested algorithm. Four different heuristic rules, modification process for initial and infeasible solution, 2-opt process, and lag exchange process, were applied to the genetic algorithm in order to both minimize the total distance and improve the loading rate at the same time. This genetic algorithm is compared with the results of existing problems suggested by Solomon. We found better solutions concerning vehicle loading rate and number of vehicles in R-type Solomon's examples R103 and R106.