• Title/Summary/Keyword: genetic process

Search Result 1,501, Processing Time 0.034 seconds

Shape & Topology Optimum Design of Truss Structures Using Genetic Algorithms (유전자 알고리즘에 의한 평면 및 입체 트러스의 형상 및 위상최적설계)

  • Yuh, Baeg-Youh;Park, Choon-Wook;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.93-102
    • /
    • 2002
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

Size, Shape and Topology Optimum Design of Trusses Using Shape & Topology Genetic Algorithms (Shape & Topology GAs에 의한 트러스의 단면, 형상 및 위상최적설계)

  • Park, Choon-Wook;Yuh, Baeg-Youh;Kim, Su-Won
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.43-52
    • /
    • 2004
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algerian was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

Discrete Optimum Design of Space Truss Structures Using Genetic Algorithms

  • Park, Choon Wook;Kang, Moon Myung
    • Architectural research
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • The objective of this study is the development of discrete optimum design algorithms which is based on the genetic algorithms. The developed algorithms was implemented in a computer program. For the optimum design, the objective function is the weight of space trusses structures and the constraints are stresses and displacements. This study solves the problem by introducing the genetic algorithms. The genetic algorithms consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed discrete optimum design algorithms was verified by applying the algorithms to optimum design examples.

Automatic Discrete Optimum Design of Space Trusses using Genetic Algorithms (유전자알고리즘에 의한 공간 트러스의 자동 이산화 최적설계)

  • Park, Choon-Wook;Youh, Baeg-Yuh;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.125-134
    • /
    • 2001
  • The objective of this study is the development of size discrete optimum design algorithm which is based on the GAs(genetic algorithms). The algorithm can perform size discrete optimum designs of space trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of space trusses and the constraints are limite state design codes(1998) and displacements. The basic search method for the optimum design is the GAs. The algorithm is known to be very efficient for the discrete optimization. This study solves the problem by introducing the GAs. The GAs consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. In the genetic process of the simple GAs, there are three basic operators: reproduction, cross-over, and mutation operators. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying GAs to optimum design examples.

  • PDF

Shape & Topology Optimum Design of Truss Structures Using Genetic Algorithms (유전자 알고리즘에 의한 트러스의 형상 및 위상최적실계)

  • Park, Choon Wook;Youh, Baeg Yuh;Kang, Moon Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.673-681
    • /
    • 2001
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithm. The algorithm can perform both shape and topology optimum designs of trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithm. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the design points selected form the genetic process. The evolutionary process evaluates the survivability of the design points. The evolutionary process evaluates the survivability of the design points selected form the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithm was verified by applying the algorithm to optimum design examples.

  • PDF

Integration of Process Planning and Operations Scheduling by Process Net Model and Genetic Algorithm (공정 네트 모델과 유전 알고리즘에 의한 공정 계획과 일정 계획의 통합)

  • 박지형;강민형;노형민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.82-87
    • /
    • 1998
  • In order to provide a manufacturing system with efficiency and flexibility to cope with the changes in shop floor status, the integration of process planning and operations scheduling is required. In this paper, an integrated system of process planning and operations scheduling based on the concept of process net model and genetic algorithm is suggested. The process net model includes the alternative process plans. The integrated system is applied for prismatic parts.

  • PDF

Integration of process planning and scheduling using simulation based genetic algorithms

  • Min, Sung-Han;Lee, Hong-Chul
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.199-203
    • /
    • 1998
  • Process planning and scheduling are traditionally regarded as separate tasks performed sequentially. But if two tasks are performed concurrently, greater performance can be achieved. In this study, we propose new approach to integration of process planning and scheduling. We propose new process planning combinations selection method using simulation based genetic algorithms. Computational experiments show that proposed method yield better performance when compared with existing methods.

  • PDF

Design of Manufacturing Cell based on Genetic Algorithm (유전 알고리즘에 기초한 제조셀의 설계)

  • 조규갑;이병욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.72-80
    • /
    • 1998
  • In this study, a design approach based on genetic algorithm is proposed to solve the manufacturing cell design problem considering alternative process plans and alternative machines. The problem is formulated as a 0-1 integer programming model which considers several manufacturing parameters, such as demand and processing time of part, machine capacity, manufacturing cell size, and the number of machines in a machine cell. A genetic algorithm is used to determine process plan for each part, part family and machine cell simultaneously.

  • PDF

An integrated process planning system through machine load using the genetic algorithm under NCPP (유전알고리즘을 적용한 NCPP기반의 기계선정 방법)

  • 최회련;김재관;노형민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.612-615
    • /
    • 2002
  • The objective of this study is to develop an integrated process planning system which can flexibly cope with the status changes in a shop floor by utilizing the concept of Non-Linear and Closed-Loop Process Planning(NCPP). In this paper, Genetic Algorithm(GA) is employed in order to quickly generate feasible setup sequences for minimizing the makespan and tardiness under an NCPP. The genetic algorithm developed in this study for getting the machine load utilizes differentiated mutation rate and method in order to increase the chance to avoid a local optimum and to reach a global optimum. Also, it adopts a double gene structure for the sake of convenient modeling of the shop floor. The last step in this system is a simulation process which selects a proper process plan among alternative process plans.

  • PDF

Genetic Algorithms for Tire Mixing Process Scheduling (타이어 정련 공정 스케줄링을 위한 유전자 알고리즘)

  • Ahn, Euikoog;Park, Sang Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.2
    • /
    • pp.129-137
    • /
    • 2013
  • This paper proposed the scheduling method for tire mixing processes using the genetic algorithm. The characteristics of tire mixing process have the manufacturing routing, operation machine and operation time by compound types. Therefore, the production scheduling has to consider characteristics of the tire mixing process. For the reflection of the characteristics, we reviewed tire mixing processes. Also, this paper introduces the genetic algorithm using the crossover and elitist preserving selection strategy. Fitness is measured by the makespan. The proposed genetic algorithm has been implemented and tested with two examples. Experimental results showed that the proposed algorithm is superior to conventional heuristic algorithm.