• Title/Summary/Keyword: genetic polymorphism and susceptibility

Search Result 248, Processing Time 0.024 seconds

Tumor Necrosis Factor-α 238 G/A Polymorphism and Risk of Hepatocellular Carcinoma: Evidence from a Meta-analysis

  • Cheng, Ke;Zhao, Yu-Jun;Liu, Lian;Wan, Jing-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3275-3279
    • /
    • 2013
  • Background: Tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) plays a very important role in the development and progression of cancer. Many epidemiological studies have evaluated associations between the TNF-${\alpha}$ 238 G/A polymorphism and hepatocellular carcinoma (HCC) risk, but the published data are inconclusive. Therefore, we performed the present meta-analysis. Methods: Electronic searches of several databases were conducted for all publications on the association between TNF-${\alpha}$ 238 G/A polymorphism and HCC through July 2012. Asummary odds ratio (OR) with its 95% confidence interval (CI) were calculated to evaluate the strength of this association. Results: Eleven case-control studies with a total of 1,572 HCC cases and 1,875 controls were finally included in this meta-analysis. Overall, the TNF-${\alpha}$ 238 G/A polymorphism was significantly associated with increased risk of hepatocellular carcinoma in three genetic comparison models (For A versus G: OR 1.32, 95%CI 1.04-1.69, P = 0.02, $I_2$ = 40%; for AG versus GG: OR 1.32, 95%CI 1.02-1.71, P = 0.03, $I_2$ = 40%; for AA/AG versus GG: OR 1.33, 95%CI 1.03-1.72, P = 0.03, $I_2$ = 41%) when all studies were pooled. Subgroup analysis by ethnicity further showed that there was a significant association between the TNF-${\alpha}$ 238 G/A polymorphism and risk of HCC in Asians under three genetic comparison models (For A versus G: OR 1.30, 95%CI 1.00-1.68, P = 0.05, $I_2$ = 45% for AA/AG versus GG: OR 1.31, 95%CI 1.00-1.71, P = 0.05, $I_2$ = 46%). Conclusions: This meta-analysis provided convincing evidence that the TNF-${\alpha}$ 238 G/A polymorphism is associated with increased susceptibility to HCC. However, more well-designed studies with large sample size are needed to validate this association in Caucasians.

Association between the NQO1 C609T Polymorphism with Hepatocellular Carcinoma Risk in the Chinese Population

  • Zhao, Hong;Zou, Li-Wei;Zheng, Sui-Sheng;Geng, Xiao-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1821-1825
    • /
    • 2015
  • Background: Associations between the NQO1 C609T polymorphism and hepatocellular carcinoma (HCC) risk are a subject of debate. We therefore performed the present meta-analysis to evaluate links with HCC susceptibility. Materials and Methods: Several major databases (PubMed, EBSCO), the Chinese national knowledge infrastructure (CNKI) and the Wanfang database were searched for eligible studies. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to measure the strength of associations. Results: A total of 4 studies including 1,325 patients and 1,367 controls were identified. There was a significant association between NQO1 C609T polymorphism and HCC for all genetic models (allelic model: OR=1.45, 95%CI=1.23-1.72, p<0.01; additive model: OR=1.96, 95%CI=1.57-2.43, p<0.01; dominant model: OR=1.62, 95%CI=1.38-1.91, p<0.01; and recessive model: OR=1.53, 95%CI=1.26-1.84, p<0.01). On subgroup analysis, similarly results were identified in Asians. For Asians, the combined ORs and 95% CIs were (allelic model: OR=1.50, 95%CI=1.24-1.82, p<0.01; additive model: OR=2.11, 95%CI=1.48-3.01, p<0.01; dominant model: OR=1.69, 95%CI=1.42-2.02, p<0.01; and recessive model: OR=1.59, 95%CI=1.16-2.19, p<0.01). Conclusions: The current meta-analysis suggested that the NQO1 C609T polymorphism could be a risk factor for developing HCC, particularly in the Chinese population.

MDM2 T309G has a Synergistic Effect with P21 ser31arg Single Nucleotide Polymorphisms on the Risk of Acute Myeloid Leukemia

  • Ebid, Gamal T.;Sedhom, Iman A.;El-Gammal, Mosaad M.;Moneer, Manar M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4315-4320
    • /
    • 2012
  • Background: The P53 tumor suppressor gene plays a pivotal role in maintaining cellular homeostasis by preventing the propagation of genome mutations. P53 in its transcriptionally active form is capable of activating distinct target genes that contribute to either apoptosis or growth arrest, like P21. However, the MDM2 gene is a major negative regulator of P53. Single nucleotide polymorphisms (SNP) in codon Arg72Pro of P53 results in impairment of the tumor suppressor activity of the gene. A similar effect is caused by a SNP in codon 31 of P21. In contrast, a SNP in position 309 of MDM2 results in increased expression due to substitution of thymine by guanine. All three polymorphisms have been associated with increased risk of tumorigenesis. Aim of the study: We aimed to study the prevalence of SNPs in the P53 pathway involving the three genes, P53, P21 and MDM2, among acute myeloid leukemia (AML) patients and to compare it to apparently normal healthy controls for assessment of impact on risk. Results: We found that the P21 ser31arg heterozygous polymorphism increases the risk of AML (P value=0.017, OR=2.946, 95% CI=1.216-7.134). Although the MDM2 309G allele was itself without affect, it showed a synergistic effect with P21 ser/arg polymorphism (P value=0.003, OR=6.807, 95% CI=1.909-24.629). However, the MDM2 309T allele abolish risk effect of the P21 polymorphic allele (P value=0.71). There is no significant association of P53 arg72pro polymorphism on the risk of AML. Conclusion: We suggest that SNPs in the P53 pathway, especially the P21 ser31arg polymorphism and combined polymorphisms especially the P21/MDM2 might be genetic susceptibility factors in the pathogenesis of AML.

Genetic Polymorphisms of GSTM1 and GSTT1 Genes in Delhi and Comparison with other Indian and Global Populations

  • Sharma, Anita;Pandey, Arvind;Sardana, Sarita;Sehgal, Ashok;Sharma, Joginder K.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5647-5652
    • /
    • 2012
  • The glutathione S-transferases (GSTs) are involved in the metabolism of many xenobiotics, including an array of environmental carcinogens, pollutants, and drugs. Genetic polymorphisms in these genes may lead to inter-individual variation in susceptibility to various diseases. In the present study, GSTM1 and GSTT1 polymorphisms were analysed using a multiplex polymerase chain reaction in 500 normal individuals from Delhi. The frequency of individuals with GSTM1 and GSTT1 null genotypes were 168 (33.6%) and 62 (12.4%) respectively, and 54(10.8%) were having homozygous null genotype for both the genes GSTM1 and GSTT1simultaneously. The studied population was compared with reported frequencies from other neighbouring state populations, as well as with those from other ethnic groups; Europeans, Blacks, and Asians. The prevalence of homozygous null GSTM1 genotype is significantly higher in Caucasians and Asians as compared to Indian population. The frequency of GSTT1 homozygous null genotypes is also significantly higher in blacks and Asians. We believe that due to large number of individuals in this study, our results are reliable estimates of the frequencies of the GSTM1, GSTT1 in Delhi. It would provide a basic database for future clinical and genetic studies pertaining to susceptibility and inconsistency in the response and/or toxicity to drugs known to be the substrates for GSTs.

Associations of Single Nucleotide Polymorphisms in miR-146a, miR-196a, miR-149 and miR-499 with Colorectal Cancer Susceptibility

  • Du, Wei;Ma, Xue-Lei;Zhao, Chong;Liu, Tao;Du, Yu-Liang;Kong, Wei-Qi;Wei, Ben-Ling;Yu, Jia-Yun;Li, Yan-Yan;Huang, Jing-Wen;Li, Zi-Kang;Liu, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.1047-1055
    • /
    • 2014
  • Background: MicroRNAs (miRNAs) are an abundant class of endogenous small non-coding RNAs of 20-25 nucleotides in length that function as negative gene regulators. MiRNAs play roles in most biological processes, as well as diverse human diseases including cancer. Recently, many studies investigated the association between SNPs in miR-146a rs2910164, miR-196a2 rs11614913, miR-149 rs229283, miR-499 rs3746444 and colorectal cancer (CRC), which results have been inconclusive. Methodology/Principal Findings: PubMed, EMBASE, CNKI databases were searched with the last search updated on November 5, 2013. For miR-196a2 rs11614913, a significantly decreased risk of CRC development was observed under three genetic models (dominant model: OR = 0.848, 95%CI: 0.735-0.979, P = 0.025; recessive model: OR = 0.838, 95%CI: 0.721-0.974, P = 0.021; homozygous model: OR = 0.754, 95%CI: 0.627-0.907, P = 0.003). In the subgroup analyses, miR-$196a2^*T$ variant was associated with a significantly decreased susceptibility of CRC (allele model: OR = 0.839, 95%CI: 0.749-0.940, P = 0.000; dominant model: OR = 0.770, 95%CI: 0.653-0.980, P = 0.002; recessive model: OR = 0.802, 95%CI: 0.685-0.939, P = 0.006; homozygous model: OR = 0.695, 95%CI: 0.570-0.847, P = 0.000). As for miR-149 rs2292832, the two genetic models (recessive model: OR = 1.199, 95% CI 1.028-1.398, P = 0.021; heterozygous model: OR = 1.226, 95% CI 1.039-1.447, P = 0.013) demonstrated increased susceptibility to CRC. On subgroup analysis, significantly increased susceptibility of CRC was found in the genetic models (recessive model: OR = 1.180, 95% CI 1.008-1.382, P = 0.040; heterozygous model: OR = 1.202, 95% CI 1.013-1.425, P = 0.013) in the Asian group. Conclusions: These findings supported that the miR-196a2 rs11614913 and miR-149 rs2292832 polymorphisms may contribute to susceptibility to CRC.

TP63 Gene Polymorphisms, Cooking Oil Fume Exposure and Risk of Lung Adenocarcinoma in Chinese Non-smoking Females

  • Yin, Zhi-Hua;Cui, Zhi-Gang;Ren, Yang-Wu;Su, Meng;Ma, Rui;He, Qin-Cheng;Zhou, Bao-Sen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6519-6522
    • /
    • 2013
  • Background: Genetic polymorphisms of TP63 have been suggested to influence susceptibility to lung adenocarcinoma development in East Asian populations. This study aimed to investigate the relationship between common polymorphisms in the TP63 gene and the risk of lung adenocarcinoma, as well as interactions of the polymorphisms with environmental risk factors in Chinese non-smoking females. Methods: A case-control study of 260 cases and 318 controls was conducted. Data concerning demographic and risk factors were obtained for each subject. The genetic polymorphisms were determined by Taqman real-time PCR and statistical analyses were performed using SPSS software. Results: For 10937405, carriers of the CT genotype or at least one T allele (CT/TT) had lower risks of lung adenocarcinoma compared with the homozygous wild CC genotype in Chinese nonsmoking females (adjusted ORs were 0.68 and 0.69, 95%CIs were 0.48-0.97 and 0.50-0.97, P values were 0.033 and 0.030, respectively). Allele comparison showed that the T allele of rs10937405 was associated with a decreased risk of lung adenocarcinoma with an OR of 0.78 (95%CI=0.60-1.01, P=0.059). Our results showed that exposure to cooking oil fumes was associated with increased risk of lung adenocarcinoma in Chinese nonsmoking females (adjusted OR=1.58, 95%CI=1.11-2.25, P=0.011). However, we did not observe a significant interaction of cooking oil fumes and TP63 polymorphisms. Conclusion: TP63 polymorphism might be a genetic susceptibility factor for lung adenocarcinoma in Chinese non-smoking females, but no significant interaction was found with cooking oil fume exposure.

Association of a Pre-miR-27a Polymorphism with Cancer Risk: an Updated Meta-analysis

  • Bai, Rong-Pan;Weng, Yu;Su, Li-Ling;Jin, Ming-Juan;Xu, Zheng-Ping;Lu, Li-Qin;Chen, Guang-Di
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10107-10114
    • /
    • 2015
  • MicroRNA-27a is highly expressed in cancers and has been identified as an oncogenic microRNA. A genetic variant in pre-miR-27a (rs895819) with a transition of A to G has been demonstrated to be associated with cancer risk; however, the results of these studies remain conflicting rather than conclusive. Therefore, we performed a meta-analysis to derive a more precise estimation. Through searching PubMed or other databases up to March 2014 using the following MeSH terms and keywords, "miR-27a", "polymorphism" and "cancer", seventeen case-control studies were identified in this meta-analysis, including 7,813 cases and 9,602. Crude odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated to investigate the association strength between rs895819 and the susceptibility of cancer. The results of the overall meta-analysis did not suggest any association between rs895819 polymorphism and cancer susceptibility, and this remained in Asians as a subgroup. In Caucasians, however, the rs895819 was associated with a reduced cancer risk in heterozygous (OR, 0.83; 95%CI, 0.75-0.93) and dominant models (OR, 0.84; 95%CI, 0.76-0.93), and the [G] allele of rs895819 showed a protective effect (OR, 0.90, 95%CI, 0.84-0.97). Further studies showed a significant association between the [G] allele of rs895819 and decreased risk of breast cancer (0.91; 95%CI, 0.85-0.98), and stratified analyses indicated a protective effect of the [G] allele in Caucasians (OR, 0.89; 95%CI, 0.82-0.98), younger breast cancer cases (OR, 0.87; 95%CI, 0.79-0.96), and in the group of unilateral breast cancer patients (OR, 0.90; 95%CI, 0.83-0.97). These findings suggest an association between pre-miR-27a polymorphism rs895819 and cancer risk in Caucasians. The protective effect of rs895819 [G] allele in younger breast cancer and in the group of unilateral breast cancer patients await further confirmation since the included studies in this meta-analysis were limited.

Identification of Ethnically Specific Genetic Variations in Pan-Asian Ethnos

  • Yang, Jin Ok;Hwang, Sohyun;Kim, Woo-Yeon;Park, Seong-Jin;Kim, Sang Cheol;Park, Kiejung;Lee, Byungwook;The HUGO Pan-Asian SNP Consortium
    • Genomics & Informatics
    • /
    • v.12 no.1
    • /
    • pp.42-47
    • /
    • 2014
  • Asian populations contain a variety of ethnic groups that have ethnically specific genetic differences. Ethnic variants may be highly relevant in disease and human differentiation studies. Here, we identified ethnically specific variants and then investigated their distribution across Asian ethnic groups. We obtained 58,960 Pan-Asian single nucleotide polymorphisms of 1,953 individuals from 72 ethnic groups of 11 Asian countries. We selected 9,306 ethnic variant single nucleotide polymorphisms (ESNPs) and 5,167 ethnic variant copy number polymorphisms (ECNPs) using the nearest shrunken centroid method. We analyzed ESNPs and ECNPs in 3 hierarchical levels: superpopulation, subpopulation, and ethnic population. We also identified ESNP- and ECNP-related genes and their features. This study represents the first attempt to identify Asian ESNP and ECNP markers, which can be used to identify genetic differences and predict disease susceptibility and drug effectiveness in Asian ethnic populations.

Current Evidence on Associations Between the MMP-7 (-181A>G) Polymorphism and Digestive System Cancer Risk

  • Ke, Pan;Wu, Zhong-De;Wen, Hua-Song;Ying, Miao-Xiong;Long, Huo-Cheng;Qing, Liu-Guo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2269-2272
    • /
    • 2013
  • Matrix metalloproteinases (MMPs) degrade various components of the extracellular matrix and functional polymorphisms in encoding genes may contribute to genetic susceptibility to many cancers. Up to now, associations between MMP-7 (-181A>G) and digestive system cancer risk have remained inconclusive. To better understand the role of the MMP-7 (-181A>G) genotype in digestive cancer development, we conducted this comprehensive meta-analysis encompassing 3,518 cases and 4,596 controls. Overall, the MMP-7 (-181A>G) polymorphism was associated with higher digestive system cancer risk on homozygote comparison (GG vs. AA, OR=1.21, 95% CI = 1.12-1.60) and in a dominant model (GG/GA vs. AA, OR=1.16, 95% CI =1.03-1.46). On subgroup analysis, this polymorphism was significantly linked to higher risks for gastric cancer (GG vs. AA, OR=1.22, 95% CI = 1.02-1.46; GA vs. AA, OR=1.82, 95% CI =1.16-2.87; GG/GA vs. AA, OR=1.13, 95% CI =1.01-1.27; GG vs. GA/AA, OR= 1.25, 95% CI = 1.06-2.39. We also observed increased susceptibility to colorectal cancer and esophageal SCC in both homozygote (OR = 1.13, 95% CI = 1.06-1.26) and heterozygote comparisons (OR = 1.45, 95% CI = 1.11-1.91). In the stratified analysis by controls, significant effects were only observed in population-based studies (GA vs. AA, OR=1.16, 95% CI=1.08-1.50; GA/AA vs. GG, OR=1.10, 95% CI=1.01-1.72). According to the source of ethnicity, a significantly increased risk was found among Asian populations in the homozygote model (GG vs. AA, OR=1.40, 95% CI=1.12-1.69), heterozygote model (GA vs. AA, OR=1.26, 95% CI=1.02-1.51), and dominant model (GG/GA vs. AA, OR=1.18, 95% CI=1.08-1.55). Our findings suggest that the MMP-7 (-181A>G) polymorphism may be a risk factor for digestive system cancer, especially among Asian populations.

Association Between Three eNOS Polymorphisms and Cancer Risk: a Meta-analysis

  • Wu, Xun;Wang, Zhi-Feng;Xu, Yin;Ren, Rui;Heng, Bao-Li;Su, Ze-Xuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5317-5324
    • /
    • 2014
  • Polymorphisms in the endothelial nitric oxide synthase (eNOS) gene may influence the risk of cancer, but the results are still debatable. Therefore, we performed a systematic review to provide a more complete picture and conducted a meta-analysis to derive a precise estimation. We searched PubMed, EMBASE, EBSCO, Google Scholar and China National Knowledge Infrastructure (CNKI) databases until April 2014 to identify eligible studies. Thirty-one studies with cancer patients and controls were included in the meta-analysis. Overall, the polled analysis revealed that the T-786C polymorphism was significantly associated with increased cancer risk under multiple genetic models (C vs T: OR=1.135, 95%CI=1.048-1.228; CC vs TT: OR=1.278, 95%CI=1.045-1.562; TC vsTT: OR=1.136, 95%CI=1.023-1.261; CC+TC vs TT: OR=1.159, 95%CI=1.047-1.281; CC vs TC+TT: OR=1.204, 95%CI= 1.003-1.447). G894T was associated with significant risk for females (TT vs GG: OR=1.414, 95%CI=1.056-1.892; TT vs GT+GG: OR=1.356, 95%CI=1.108-1.661) and for breast cancer (T vs G: OR=1.097, 95%CI=1.001-1.203; TT vs GG: OR=1.346, 95%CI=1.012-1.789; TT vs GT+GG: OR=1.269, 95%CI=1.028-1.566). Increased susceptibility was revealed for prostate cancer with 4a/b (ba vs bb: OR=1.338, 95%CI=1.013-1.768; aa+ba vs bb: OR=1.474, 95%CI=1.002-2.170). This meta-analysis indicated that the eNOS T-786C polymorphism is associated with elevated cancer risk; the G894T polymorphism contributes to susceptibility to breast cancer and cancer generally in females; and the 4a/b polymorphism may be associated with prostate cancer risk.