• Title/Summary/Keyword: genetic obesity

Search Result 176, Processing Time 0.024 seconds

The Relationship of Leptin (+19) AG, Leptin (2548) GA, and Leptin Receptor Gln223Arg Gene Polymorphisms with Obesity and Metabolic Syndrome in Obese Children and Adolescents

  • Bilge, Serap;Yilmaz, Resul;Karaslan, Erhan;Ozer, Samet;Ates, Omer;Ensari, Emel;Demir, Osman
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.3
    • /
    • pp.306-315
    • /
    • 2021
  • Purpose: Obesity is defined as the abnormal or excessive accumulation of fat over acceptable limits. Leptin is a metabolic hormone present in the circulation in amounts proportional to fat mass. Leptin reduces food intake and increases energy expenditure, thus regulating body weight and homeostasis. Various polymorphisms are present in the leptin gene and its receptor. These polymorphisms may be associated with obesity. This study aimed to show the association of leptin (+19) AG, leptin (2548) GA, and Gln223Arg leptin receptor polymorphisms with obesity and metabolic syndrome in Turkish children aged 6-17 years, and to conduct further investigations regarding the genetic etiology of obesity. Methods: A total of 174 patients diagnosed with obesity and 150 healthy children who were treated at Tokat Gaziosmanpasa Medical School Hospital between September 2014 and March 2015 were included in this study. The ages of the children were between 6 and 17 years, and anthropometric and laboratory results were recorded. Genotyping of leptin (+19) AG, leptin (2548) GA, and leptin receptor Gln223Arg polymorphisms was performed by polymerase chain reaction. Results: An association between leptin receptor Gln223Arg gene polymorphism and obesity was detected. Conclusion: Further studies are needed to determine the role of genetic etiologies and to indicate the role of leptin signal transmission impairment in the pathogenesis of obesity. We hope that gene therapy can soon provide a solution for obesity.

Replication of Early B-cell Factor 1 (EBF1) Gene-by-psychosocial Stress Interaction Effects on Central Adiposity in a Korean Population

  • Kim, Hyun-Jin;Min, Jin-Young;Min, Kyoung-Bok
    • Journal of Preventive Medicine and Public Health
    • /
    • v.49 no.5
    • /
    • pp.253-259
    • /
    • 2016
  • Objectives: Central obesity plays a major role in the development of many chronic diseases, including cardiovascular disease and cancer. Chronic stress may be involved in the pathophysiology of central obesity. Although several large-scale genome-wide association studies have reported susceptibility genes for central adiposity, the effects of interactions between genes and psychosocial stress on central adiposity have rarely been examined. A recent study focusing on Caucasians discovered the novel gene early B-cell factor 1 (EBF1), which was associated with central obesity-related traits via interactions with stress levels. We aimed to evaluate EBF1 gene-by-stress interaction effects on central adiposity traits, including visceral adipose tissue (VAT), in Korean adults. Methods: A total of 1467 Korean adults were included in this study. We selected 22 single-nucleotide polymorphisms (SNPs) in the EBF1 gene and analyzed their interactions with stress on central adiposity using additive, dominant, and recessive genetic modeling. Results: The four SNPs that had strong linkage disequilibrium relationships (rs10061900, rs10070743, rs4704967, and rs10056564) demonstrated significant interactions with the waist-hip ratio in the dominant model ($p_{int}$<0.007). In addition, two other SNPs (rs6556377 and rs13180086) were associated with VAT by interactions with stress levels, especially in the recessive genetic model ($p_{int}$<0.007). As stress levels increased, the mean values of central adiposity traits according to SNP genotypes exhibited gradual but significant changes (p<0.05). Conclusions: These results suggest that the common genetic variants for EBF1 are associated with central adiposity through interactions with stress levels, emphasizing the importance of managing stress in the prevention of central obesity.

Extraction and Characteristics of Anti-obesity Lipase Inhibitor from Phellinus linteus

  • Lee, Jong-Kug;Jang, Jeong-Hoon;Lee, Jong-Tae;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.38 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • To develop a potent anti-obesity lipase inhibitor from mushroom, the lipase inhibitory activities of various mushroom extracts were determined. Methanol extracts from Phellinus linteus fruiting body exhibited the highest lipase inhibitory activity (72.8%). The inhibitor was maximally extracted by treatment of a P. linteus fruiting body with 80% methanol at $40^{\circ}C$ for 24 hr. After partial purification by systematic solvent extraction, the inhibitor was stable in the range of $40\sim80^{\circ}C$ and pH 2.0~9.0. In addition to lipase inhibitory activity, the inhibitor showed 59.4% of superoxide dismutase-like activity and 56.3% of acetylcholinesterase inhibitory activity.

Anti-Obesity Drugs: A Current Research Insight

  • Son Eun-hwa;In San-Whan;Kim Byung-Oh;Pyo Suhkneung
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.89-101
    • /
    • 2005
  • Obesity is increasing worldwide and has become a major health burden in Western societies affecting every third American and every fifth European. Obesity makes a major contribution to morbidity and mortality, predisposing individuals to cardiovascular disease and diabetes. Many new substances are currently being investigated for their usefulness in the pharmacotherapy of obesity. Most anti-obesity drugs can be divided into four groups: those that reduce food intake; those that alter metabolism; those that increase thermogenesis; and those that regulate hormone involved in feeding behavior. In this article we review these and other agents available in various countries for the treatment of obesity. Perhaps more importantly, we have focussed on areas of potential productivity in the future. Over the last 5 or so years, this impetus in obesity research has provided us with exciting new drugs targets involved in the regulation of feeding behavior and cellular mechanism involved in energy expenditure. Recent development in the quest for control of human obesity include the discovery of hormones, neuropeptides, receptors and transcription factors involved in feeding behavior, metabolic rate and adipocyte development. For developing new, perhaps even more specific pharmacological agents, further research is needed to understand the individual different genetic and physiological basis of obesity. It remains the hope of research scientists that in the not too distant future we shall see a new class of anti-obesity drugs arising logically from the molecular biology revolutions.

  • PDF

Genomics, Proteomics and Nutrition : Applications to Obesity Research

  • Sumithra Urs;Heo, Young-Ran;Kim, Suyeon;Kim, Jung-Han;Brynn H. Jones
    • Nutritional Sciences
    • /
    • v.5 no.3
    • /
    • pp.129-133
    • /
    • 2002
  • Obesity is a major public health problem in western countries. Genetic and environmental factors, separately or in combination are major determinants of fat mass. Both central effectors (primarily hypothalamus) and peripheral tissues (such as adipose tissue) are implicated in the pathogenesis of obesity. A significant number of studies have documented potential contribution of adipose tissue -via its newly discovered secretory function- to the pathogenesis of obesity and co-morbid conditions including cardiovascular disease, diabetes and hypertension. Applications of analytical techniques such as genomics and proteomics have enabled better understanding of biological sciences in general and have only being applied recently to nutritional sciences including obesity research. Here, we review the recent progress in adipose tissue functional genomics and proteomics, and the importance of these studies in energy metabolism and obesity research.

Gut Microbiota and Clinical Disease: Obesity and Nonalcoholic Fatty Liver Disease

  • Park, Ji Sook;Seo, Ji Hyun;Youn, Hee-Shang
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.16 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • The prevalence of obesity is increasing worldwide. Obesity can cause hyperlipidemia, hypertension, cardiovascular diseases, metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). Many environmental or genetic factors have been suggested to contribute to the development of obesity, but there is no satisfactory explanation for its increased prevalence. This review discusses the latest updates on the role of the gut microbiota in obesity and NAFLD.

Review on Predictors of Weight Loss in Obesity Treatment (비만 치료에 있어서 체중 감량에 영향을 주는 인자들에 대한 고찰)

  • Nam, Seung-Hee;Kim, Seo-Young;Lim, Young-Woo;Park, Young-Bae
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.2
    • /
    • pp.115-127
    • /
    • 2018
  • Objectives: People often fail to reduce or maintain their weight despite trying to lose weight. The purpose of this study was to review previously published study results of the predictive factors associated with weight loss in obesity treatment. Methods: Authors searched for the articles related to weight loss, published from 2007 to 2017 found on PubMed, Scopus, Research Information Sharing Service (RISS), and Koreanstudies Information Service System (KISS). A total of 43 articles were finally selected. From the study results, unchangeable and changeable predictors were extracted, and these predictors were examined according to detailed categories. Results: Predictors of weight loss in obesity treatment included genetic and physiological factors, demographic factors, history of treatment on obesity related factors, behavioral factors, psychological factors and treatment process related factors. The main factors of weight loss were unchangeable predictors such as high initial degree of obesity and younger age, and changeable predictors such as dietary restraint, regular exercise, self-efficacy, initial weight loss and attendance. Especially dietary restraint, regular exercise, successful initial weight loss and high attendance were considered to be dominant factors for weight loss treatments. Conclusions: Our review results suggest that unchangeable and changeable predictors of weight loss should be carefully examined during treatments of obesity.

Mechanisms of Weight Control by Primary Cilia

  • Lee, Chan Hee;Kang, Gil Myoung;Kim, Min-Seon
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.169-176
    • /
    • 2022
  • A primary cilium, a hair-like protrusion of the plasma membrane, is a pivotal organelle for sensing external environmental signals and transducing intracellular signaling. An interesting linkage between cilia and obesity has been revealed by studies of the human genetic ciliopathies Bardet-Biedl syndrome and Alström syndrome, in which obesity is a principal manifestation. Mouse models of cell type-specific cilia dysgenesis have subsequently demonstrated that ciliary defects restricted to specific hypothalamic neurons are sufficient to induce obesity and hyperphagia. A potential mechanism underlying hypothalamic neuron cilia-related obesity is impaired ciliary localization of G protein-coupled receptors involved in the regulation of appetite and energy metabolism. A well-studied example of this is melanocortin 4 receptor (MC4R), mutations in which are the most common cause of human monogenic obesity. In the paraventricular hypothalamus neurons, a blockade of ciliary trafficking of MC4R as well as its downstream ciliary signaling leads to hyperphagia and weight gain. Another potential mechanism is reduced leptin signaling in hypothalamic neurons with defective cilia. Leptin receptors traffic to the periciliary area upon leptin stimulation. Moreover, defects in cilia formation hamper leptin signaling and actions in both developing and differentiated hypothalamic neurons. The list of obesity-linked ciliary proteins is expending and this supports a tight association between cilia and obesity. This article provides a brief review on the mechanism of how ciliary defects in hypothalamic neurons facilitate obesity.

Inhibitory Effects of Marine Algae Extract on Adipocyte Differentiation and Pancreatic Lipase Activity

  • Kim, Eun-Sil;Lee, Kyoung-Jin;Oh, Kyoung-Hee;Ahn, Jong-Hoon;Kim, Seon-Beom;Liu, Qing;Hwang, Bang-Yeon;Lee, Mi-Kyeong
    • Natural Product Sciences
    • /
    • v.18 no.3
    • /
    • pp.153-157
    • /
    • 2012
  • Obesity, which is characterized by excessive fat accumulation in adipose tissues, occurs by fat absorption by lipase and sequential fat accumulation in adipocyte through adipocyte differentiation. Thus, inhibition of pancreatic lipase activity and adipocyte differentiation would be crucial for the prevention and progression of obesity. In the present study, we attempted to evaluate anti-adipogenic activity of several algae extracts employing preadipocytes cell line, 3T3-L1 as an in vitro assay system. The effects on pancreatic lipase activity in vitro were also evaluated. Total methanolic extracts of Cladophora wrightiana and Costaria costata showed significant inhibitory activity on adipocyte differentiation as assessed by measuring fat accumulation using Oil Red O staining. Related to pancreatic lipase, C. wrightiana and Padina arborescens showed significant inhibition. Further fractionation of C. wrightiana, which showed the most potent activity, suggested that $CHCl_3$ and n-BuOH fraction are responsible for adipocyte differentiation inhibition, whereas n-BuOH and $H_2O$ fraction for pancreatic lipase inhibition. Our study also demonstrated that n-BuOH fraction was effective both in early and middle stage of differentiation whereas $CHCl_3$ fraction was effective only in early stage of differentiation. Taken together, algae might be new candidates in the development of obesity treatment.