• Title/Summary/Keyword: genetic network

Search Result 1,140, Processing Time 0.026 seconds

Topological Design of Reliable Network Expansion (신뢰성있는 네트워크 확장을 위한 위상설계)

  • Yum Chang Sun;Lee Han Jin
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2004.11a
    • /
    • pp.37-41
    • /
    • 2004
  • The existing network can be expanded with addition of new nodes and multiple choices of link type for each nossible link. In this paper, the design problem of network expansion is defined as finding the network topology minimizing cost subject to reliability constraint. To efficiently solve the problem, an genetic algorithm approach is suggested.

  • PDF

Genetically Optimized Fuzzy Polynomial Neural Network and Its Application to Multi-variable Software Process

  • Lee In-Tae;Oh Sung-Kwun;Kim Hyun-Ki;Pedrycz Witold
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially Genetic Algorithms(GAs). The conventional FPNN developed so far are based on mechanisms of self-organization and evolutionary optimization. The design of the network exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being provided by the designer and kept fixed throughout the overall development process. This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. It is shown that the proposed advanced genetic algorithms based Fuzzy Polynomial Neural Networks is more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS) dataset to evaluate the performance of the proposed model.

A Searching Method of Optima] Injection Molding Condition using Neural Network and Genetic Algorithm (신경망 및 유전 알고리즘을 이용한 최적 사출 성형조건 탐색기법)

  • Baek Jae-Yong;Kim Bo-Hyun;Lee Gyu-Bong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.946-949
    • /
    • 2005
  • It is very a time-consuming and error-prone process to obtain the optimal injection condition, which can produce good injection molding products in some operational variation of facilities, from a seed injection condition. This study proposes a new approach to search the optimal injection molding condition using a neural network and a genetic algorithm. To estimate the defect type of unknown injection conditions, this study forces the neural network into learning iteratively from the injection molding conditions collected. Major two parameters of the injection molding condition - injection pressure and velocity are encoded in a binary value to apply to the genetic algorithm. The optimal injection condition is obtained through the selection, cross-over, and mutation process of the genetic algorithm. Finally, this study compares the optimal injection condition searched using the proposed approach. with the other ones obtained by heuristic algorithms and design of experiment technique. The comparison result shows the usability of the approach proposed.

  • PDF

Applying Distributed Agents to Parallel Genetic Algorithm on Dynamic Network Environments (동적 네트워크 환경하의 분산 에이전트를 활용한 병렬 유전자 알고리즘 기법)

  • Baek Jin-Wook;Bang Jeon-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.119-125
    • /
    • 2006
  • Distributed Systems can be defined as set of computing resources connected by computer network. One of the most significant techniques in optimization problem domains is parallel genetic algorithms, which are based on distributed systems. Since the status of dynamic network environments such as Internet and mobile computing. can be changed continually, it must not be efficient on the dynamic environments to solve an optimization problem using previous parallel genetic algorithms themselves. In this paper, we propose the effective technique, in which the parallel genetic algorithm can be used efficiently on the dynamic network environments.

  • PDF

A Study on Implementation of Evolving Cellular Automata Neural System (진화하는 셀룰라 오토마타 신경망의 하드웨어 구현에 관한 연구)

  • 반창봉;곽상영;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.255-258
    • /
    • 2001
  • This paper is implementation of cellular automata neural network system which is a living creatures' brain using evolving hardware concept. Cellular automata neural network system is based on the development and the evolution, in other words, it is modeled on the ontogeny and phylogeny of natural living things. The proposed system developes each cell's state in neural network by CA. And it regards code of CA rule as individual of genetic algorithm, and evolved by genetic algorithm. In this paper we implement this system using evolving hardware concept Evolving hardware is reconfigurable hardware whose configuration is under the control of an evolutionary algorithm. We design genetic algorithm process for evolutionary algorithm and cells in cellular automata neural network for the construction of reconfigurable system. The effectiveness of the proposed system is verified by applying it to time-series prediction.

  • PDF

A study on Performance Improvement of Neural Networks Using Genetic algorithms (유전자 알고리즘을 이용한 신경 회로망 성능향상에 관한 연구)

  • Lim, Jung-Eun;Kim, Hae-Jin;Chang, Byung-Chan;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2075-2076
    • /
    • 2006
  • In this paper, we propose a new architecture of Genetic Algorithms(GAs)-based Backpropagation(BP). The conventional BP does not guarantee that the BP generated through learning has the optimal network architecture. But the proposed GA-based BP enable the architecture to be a structurally more optimized network, and to be much more flexible and preferable neural network than the conventional BP. The experimental results in BP neural network optimization show that this algorithm can effectively avoid BP network converging to local optimum. It is found by comparison that the improved genetic algorithm can almost avoid the trap of local optimum and effectively improve the convergent speed.

  • PDF

A Genetic Algorithm Approach to the Frequency Assignment Problem on VHF Network of SPIDER System

  • Kwon, O-Jeong
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.1
    • /
    • pp.56-69
    • /
    • 2000
  • A frequency assignment problem on time division duplex system is considered. Republic of Korea Army (ROKA) has been establishing an infrastructure of tactical communication (SPIDER) system for next generation and it will be a core network structure of system. VHF system is the backbone network of SPIDER, that performs transmission of data such as voice, text and images. So, it is a significant problem finding the frequency assignment with no interference under very restricted resource environment. With a given arbitrary configuration of communications network, we find a feasible solution that guarantees communication without interference between sites and relay stations. We formulate a frequency assignment problem as an Integer Programming model, which has NP-hard complexity. To find the assignment results within a reasonable time, we take a genetic algorithm approach which represents the solution structure with available frequency order, and develop a genetic operation strategies. Computational result shows that the network configuration of SPIDER can be solved efficiently within a very short time.

  • PDF

Analysis of regionally centralized and decentralized multistage reverse logistics networks using genetic algorithm (유전알고리즘을 이용한 지역 집중형 및 분산형 다단계 역물류 네트워크 분석)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.4
    • /
    • pp.87-104
    • /
    • 2014
  • This paper proposes regionally centralized multistage reverse logistics (cmRL) networks and regionally decentralized multistage reverse logistics (dmRL) networks. cmRL considers whole area of RL network, while dmRL regionally distributed area of RL network. Each type is formulated by the mixed integer programming (MIP) models, which are realized in genetic algorithm (GA) approach. Two types of numerical experiments using RL network are presented and various measures of performance are used for comparing the efficiency of the cmRL and the dmRL. Finally, it is proved that the performance of the cmRL is superior to that of the dmRL.

Study on the Resource Allocation Planning of Container Terminal (컨테이너 터미널의 자원 할당계획에 관한 연구)

  • Jang, Yang-Ja;Jang, Seong-Yong;Yang, Chang-Ho;Park, Jin-Woo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.14-24
    • /
    • 2002
  • We focus on resource allocation planning in container terminal operation planning problems and present network design model and genetic algorithm. We present a network design model in which arc capacities must be properly dimensioned to sustain the container traffic. This model supports various planning aspects of container terminal and brings in a very general form. The integer programming model of network design can be extended to accommodate vertical or horizontal yard configuration by adding constraints such as restricting the sum of yard cranes allocated to a block of yards. We devise a genetic algorithm for the network design model in which genes have the form of general integers instead of binary integers. In computational experiments, it is found that the genetic algorithm can produce very good solution compared to the optimal solution obtained by CPLEX in terms of computation time and solution quality. This algorithm can be used to generate many alternatives of a resource allocation plan for the container terminal and to evaluate the alternatives using various tools such as simulation.

A Study on Dual Response Approach Combining Neural Network and Genetic Algorithm (인공신경망과 유전알고리즘 기반의 쌍대반응표면분석에 관한 연구)

  • Arungpadang, Tritiya R.;Kim, Young Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.5
    • /
    • pp.361-366
    • /
    • 2013
  • Prediction of process parameters is very important in parameter design. If predictions are fairly accurate, the quality improvement process will be useful to save time and reduce cost. The concept of dual response approach based on response surface methodology has widely been investigated. Dual response approach may take advantages of optimization modeling for finding optimum setting of input factor by separately modeling mean and variance responses. This study proposes an alternative dual response approach based on machine learning techniques instead of statistical analysis tools. A hybrid neural network-genetic algorithm has been proposed for the purpose of parameter design. A neural network is first constructed to model the relationship between responses and input factors. Mean and variance responses correspond to output nodes while input factors are used for input nodes. Using empirical process data, process parameters can be predicted without performing real experimentations. A genetic algorithm is then applied to find the optimum settings of input factors, where the neural network is used to evaluate the mean and variance response. A drug formulation example from pharmaceutical industry has been studied to demonstrate the procedures and applicability of the proposed approach.