• Title/Summary/Keyword: genetic mutation

Search Result 1,049, Processing Time 0.024 seconds

Single-Machine Total Completion Time Scheduling with Position-Based Deterioration and Multiple Rate-Modifying Activities

  • Kim, Byung-Soo;Joo, Cheol-Min
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.4
    • /
    • pp.247-254
    • /
    • 2011
  • In this paper, we study a single-machine scheduling problem with deteriorating processing time of jobs and multiple rate-modifying activities which reset deteriorated processing time to the original processing time. In this situation, the objective function is to minimize total completion time. First, we formulate an integer programming model. Since the model is difficult to solve as the size of real problem being very large, we design an improved genetic algorithm called adaptive genetic algorithm (AGA) with spontaneously adjusting crossover and mutation rate depending upon the status of current population. Finally, we conduct some computational experiments to evaluate the performance of AGA with the conventional GAs with various combinations of crossover and mutation rates.

Analyzing clinical and genetic aspects of axonal Charcot-Marie-Tooth disease

  • Kwon, Hye Mi;Choi, Byung-Ok
    • Journal of Genetic Medicine
    • /
    • v.18 no.2
    • /
    • pp.83-93
    • /
    • 2021
  • Charcot-Marie-Tooth disease (CMT) is the most common hereditary motor and sensory peripheral neuropathy. CMT is usually classified into two categories based on pathology: demyelinating CMT type 1 (CMT1) and axonal CMT type 2 (CMT2) neuropathy. CMT1 can be distinguished by assessing the median motor nerve conduction velocity as greater than 38 m/s. The main clinical features of axonal CMT2 neuropathy are distal muscle weakness and loss of sensory and areflexia. In addition, they showed unusual clinical features, including delayed development, hearing loss, pyramidal signs, vocal cord paralysis, optic atrophy, and abnormal pupillary reactions. Recently, customized treatments for genetic diseases have been developed, and pregnancy diagnosis can enable the birth of a normal child when the causative gene mutation is found in CMT2. Therefore, accurate diagnosis based on genotype/phenotypic correlations is becoming more important. In this review, we describe the latest findings on the phenotypic characteristics of axonal CMT2 neuropathy. We hope that this review will be useful for clinicians in regard to the diagnosis and treatment of CMT.

Effects of Genotype Mutation and Coat Color Phenotype on the Offspring from Mating System of MC1R Genotype Patterns in Korean Brindle Cattle (칡소의 MC1R의 유전자형에 따른 교배 조합이 자손의 모색과 유전자형 변이에 미치는 영향)

  • Kim, Sang-Hwan;Jung, Kyoung-Sub;Lee, Ho-Jun;Baek, Jun-Seok;Jung, Duk-Won;Kim, Dae-Eun;Yoon, Jong-Taek
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.215-222
    • /
    • 2013
  • Bovine coat color is decided by the melanocortin receptor 1 (MC1R) genotype mutation and melanogenesis. Specially, in the various cattle breeds, dominant black coat color is expressed by dominant genotype of $E^D$, red or brown is expressed in the frame shift mutation of recessive homozygous e by base pair deletion and wild type of $E^+$ is expressed in various coat colors. However, not very well known about the effected of MC1R genotype mutation on the coat color through family lines in KBC. Therefore, this study were to investigate effect of MC1R genotype mutation on the coat color, and to suggest mating breed system in accordance with of MC1R genotype for increased on brindle coat color appearance. Parents (sire 2 heads and dam 3 heads) and offspring (total : 54 heads) from crossbreeding in KBC family line with the MC1R genotype and phenotype records were selected as experimental animals. The relationship between melanocortin 1 receptor (MC1R) genotypes expression verified by PCR-RFLP, and brindle coat color appearance to the family line of the cross mating breed from MC1R genotype pattern was determined. As a result, 4MC1R genetic variations, $E^+/E^+$ (sire 1), $E^+/e$ (sire 2 and dam 3), $E^+/e$ with 4 bands of 174, 207 and 328 bp (dam 1) and $E^+/e$ with 3 bands of 174, 207, 328 and 535 bp (dam 2) from parents (sire and dam) of KBC. However, 3 genetic variations, e/e (24%), $E^+/E^+$ (22%) and $E^+/e$ (56%) were identified in offspring. Also, brindle coat color expressrated was the e/e with the 0%, $E^+/E^+$ with 67% and $E^+/e$ with 77% from MC1R genotype in offspring on the cross mating of KBC. Furthermore, when the sire had $E^+/e$ genotype and the dam had $E^+/E^+$ with the 3 bands or $E^+/e$ genotype, and both had whole body-brindle coat color, 62% of the offspring had whole body-brindle coat color. Therefore, the seresults, the mating system from MC1R genotype patterns of the sires ($E^+/e$) and dams ($E^+/E^+$ with the 3 bands or $E^+/e$) with brindle coat color may have the highest whole body-brindle coat color expression in their offspring.

In vitro Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Forward Mutation Assay in Mammalian cells (포유동물세포의 Forward Mutation을 지표로 한 Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Assay)

  • 류재천;김경란;최윤정
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 1999
  • The mouse lymphoma thymidine kinase (tk+/-) gene assay (MOLY) using L5178Y tk+/- mouse lymphoma cell line is one of the mammalian forward mutation assays. It is well known that MOLY has many advantages and more sensitive than the other mammalian forward mutation assays such as x-linked hyposanthine phosphoribosyltransferase (hprt) gene assay. The target gene of MOLY is a heterozygous tk+/- gene located in 11 chromosome of L5178Y tk+/- cell, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. MOLY has relatively short expression time (2-3 days) compared to 1 week of hprt gene assay. MOLY can also induce relatively high mutant frequency so a large number of events can be recorded. The bimodal distribution of colony size which may indicate gene mutation and chromosome breakage potential of chemicals according to mutation scale such as large normal-growing mutants and small slow-growing mutants can be observed in this assay. The statistical analysis of data can be performed using the MUTANT program developed by York Electronic Research in association with Hazelton as recommended by the UKEMS (United Kingdom Environmental Mutagen Society) guidelines. This report reviewed MOLY using the microtiter cloning technique (microwell assay).

Recent Advanced Toxicological Methods for Environmental Hazardous Chemicals (환경 오염물질의 진보된 독성 평가 기법)

  • 류재천;최윤정;김연정;김형태;방형애;송윤선
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.1_2
    • /
    • pp.1-12
    • /
    • 1999
  • Recently, several new methods for the detection of genetic damages in vitro and in vivo based on molecular biological techniques were introduced according to the rapid progress in toxicology combined with cellular and molecular biology. Among these methods, mouse lymphoma thymidine kanase (tk) gene forward mutation assay, single cell gel electrophoresis (comet assay) and transgenic animal and cell line model as a target gene of lac I (Big Blue) and lac Z (Muta Mouse) gene mutation are newly introduced based on molecular toxicological approaches. The mouse lymphoma tk$\^$+/-/ gene assay (MOLY) using L5178Y tk$\^$+/-/ mouse lymphoma cell line is one of the mammalian forward mutation assays, and has many advantages and more sensitive than hprt assay. The target gene of MOLY is a heterozygous tk$\^$+/-/ gene located in 11 chromosome, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. The comet assay is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakages in mammalian cells, Also, transgenic animal and cell line models, which have exogenous DNA incorporated into their genome, carry recoverable shuttle vector containing reporter genes to assess endogenous effects or alteration in specific genes related to disease process, are powerful tools to study the mechanism of mutation in vivo and in vitro, respectively. Also in vivo acridine orange supravital staining micronucleus assay by using mouse peripheral reticulocytes was introduced as an alternative of bone marrow micronucleus assay. In this respect, there was an International workshop on genotoxicity procedure (IWGTP) supported by OECD and EMS (Environmental Mutagen Society) at Washington D. C. in March 25-26, 1999. The objective of IWGTP is to harmonize the testing procedures internationally, and to extend to finalization of OECD guideline, and to the agreement of new guidelines under the International Conference of Harmonization (ICH) for these methods mentioned above. Therefore, we introduce and review the principle, detailed procedure, and application of MOLY, comet assay, transgenic mutagenesis assay and supravital staining micronucleus assay.

  • PDF

Micronucleus Test in Bone Marrow Cells and Bacterial Reverse Mutation Assay of HMC05 (HMC05의 경구투여 소핵시험 및 복귀돌연변이 시험)

  • Shin, Heung-Mook
    • The Korea Journal of Herbology
    • /
    • v.25 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • Objectives : We investigated genetic toxicity of HMCO5 using the Micronucleus Test in bone marrow cells of mice and Bacterial Reverse Mutation Assay in plate incorporation method according to OECD Guidelines and KFDA Guidelines. Methods : 1. Micronucleus test: The male rats were divided into 5 groups, respectively; G(1), treated with distilled water: G(2), treated with 1250mg/kg HMC05: G(3), treated with 2500mg/kg HMC05, G(4), treated with 5,000mg/kg HMC05; G(5), treated with Cyclophosphamide $H_2O$. Sterilized distilled water and HMC05 were administered for two consecutive days. Cyclophosphamide $H_2O$ was administered once on the day of 2nd administration. 2. Bacterial Reverse Mutation Aassay: Experimental groups were divided into two groups: with S-9mix(+S) or without S-9mix(-S). Each group treated with sterilized distilled water only, HMCO5(62, 185, 556, 1,667, $5,000{\mu}g$/plate) and, positive vehicles(Sodium azide, 2-Aminoanthracene, 4-Nitroquinoline N-oxide, ICR 191), respectively. Results : HMC05 did not show any changes in the number of micronucleated polychromatic erythrocytes(MNPCE) among 200 polychromatic erythrocytes compare to negative control. However, there were significant (p<0.01) increase with CPA in MNPCE. In Bacterial Reverse Mutation Aassay, no significant increases in the number of revertant colonies compared to (삭제) negative control were detected in all concentrations of HMC05. Conclusions : These results indicate that HMC05 did not show any genotoxicity against in Micronucleus test and Bacterial Reverse Mutation Aassay.

A Case of Apert Syndrome with a P253R Mutation on FGFR2 Exon VIII (FGFR2 유전자의 8번째 엑손부위의 P253R 돌연변이로 진단된 Apert 증후군 1례)

  • Lee, Young-Jin;Ko, Jung-Min;Park, Seong-Shik;Cheon, Chong-Kun
    • Journal of Genetic Medicine
    • /
    • v.7 no.2
    • /
    • pp.151-155
    • /
    • 2010
  • Apert syndrome is a rare congenital anomaly characterized by craniofacial malformations and severe symmetrical syndactyly of fingers and toes. This syndrome is caused by a genetic mutation; the S253 mutation is common, though the P253R mutation is not as frequent. Common symptoms include skeletal malformations, poor joint mobility, eye and ear problems, cleft palate, and orthodontic and other dental problems. We report a case of an infant with the common morphological features of Apert syndrome. Interestingly, she was found to have the P253R mutation in FGFR2 exon VIII, which has been less commonly observed in Korea. A brief review of the literature is included.

Smith-Kingsmore syndrome: The first report of a Korean patient with the MTOR germline mutation c.5395G>A p.(Glu1799Lys)

  • Lee, Dohwan;Jang, Ja-Hyun;Lee, Cha Gon
    • Journal of Genetic Medicine
    • /
    • v.16 no.1
    • /
    • pp.27-30
    • /
    • 2019
  • Smith-Kingsmore syndrome (SKS; OMIM 616638), also known as macrocephaly-intellectual disability-neurodevelopmental disorder-small thorax syndrome (MINDS; ORPHA 457485), is a rare autosomal dominant disorder, the prevalence of which is not known. It is caused by a heterozygous germline mutation in MTOR (OMIM 601231). Ten different MTOR germline mutations in 27 individuals have been reported in the medical literature to date. These were all gain-of-function missense variants, and about half of the 27 individuals had c.5395G>A p.(Glu1799Lys) in MTOR. Here, I report for the first time a Korean patient with the heterozygous germline mutation c.5395G>A p.(Glu1799Lys) in MTOR. It was found to be a de novo mutation, which was identified by whole-exome sequencing and confirmed by Sanger sequencing. The patient showed typical clinical features of SKS, including macrocephaly/megalencephaly; moderate intellectual disability; seizures; behavioral problems; and facial dysmorphic features of curly hair, frontal bossing, midface hypoplasia, and hypertelorism.

Communication Patterns in Korean Families during BRCA Genetic Testing for Breast Cancer (BRCA 돌연변인 검사 중 유방암 환자 가족의 커뮤니케이션 패턴)

  • Anderson, Gwen;Jun, Myung-Hee;Choi, Kyung-Sook
    • Asian Oncology Nursing
    • /
    • v.11 no.3
    • /
    • pp.200-209
    • /
    • 2011
  • Purpose: The purpose of this micro-ethnography is to examine whether science and societal changes impact family communication patterns among a convenience sample of 16 Korean women. Methods: The authors observed family communication in the context of a new breast cancer genetic screening and diagnostic testing program to detect BRCA gene mutations in Korean women at highest risk. Results: Analysis of in-depth interviews and field notes taken during participant observation illustrated that communication patterns in families vary according to a woman's position in the family. If a grandmother tests positive for a gene mutation, her daughters make decisions on her behalf; they open and maintain the communication channel among family members. If a housewife is diagnosed with cancer and a genetic mutation, she immediately consults her husband and her sisters. The husband creates an open communication channel between his wife, his parents and his siblings. As a result, a woman's cancer is a concern for the whole family not merely a woman's secret or crisis. Conclusion: Cultural differences are important to consider when designing new genetic service programs in different countries.

A familial case of Blau syndrome caused by a novel NOD2 genetic mutation

  • Kim, Woojoong;Park, Eujin;Ahn, Yo Han;Lee, Jiwon M.;Kang, Hee Gyung;Kim, Byung Joo;Ha, Il-Soo;Cheong, Hae Il
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.5-9
    • /
    • 2016
  • Blau syndrome (BS) is a rare autosomal dominant, inflammatory syndrome that is characterized by the clinical triad of granulomatous dermatitis, symmetric arthritis, and recurrent uveitis. Mutations in the nucleotide oligomerization domain 2 (NOD2 ) gene are responsible for causing BS. To date, up to 30 Blau-associated genetic mutations have been identified within this gene. We report a novel NOD2 genetic mutation that causes BS. A girl, aged 8 years, and her brother, aged 10 years, developed erythematous skin rashes and uveitis. The computed tomography angiogram of the younger sister showed features of midaortic dysplastic syndrome. The brother had more prominent joint involvement than the sister. Their father (38 years) was also affected by uveitis; however, only minimal skin involvement was observed in his case. The paternal aunt (39 years) and her daughter (13 years) were previously diagnosed with sarcoidosis. Mutational analysis revealed a novel c.1439 A>G mutation in the NOD2 gene in both siblings. The novel c.1439 A>G mutation in the NOD2 gene was found in a familial case of BS. Although BS is rare, it should always be considered in patients presenting with sarcoidosis-like features at a young age. Early diagnosis of BS and prompt multisystem workup including the eyes and joints can improve the patient's outcome.