• Title/Summary/Keyword: genetic mutation

Search Result 1,049, Processing Time 0.021 seconds

A novel RET mutation identified in a patient with pheochromocytoma and renal cell carcinoma

  • Kwon, Jae Wan;Jung, Eui Dal;Jeon, Eon Ju;Park, Jung Kyu;Lee, Joon Kee;Cho, Chang Ho
    • Kosin Medical Journal
    • /
    • v.33 no.3
    • /
    • pp.446-453
    • /
    • 2018
  • Pheochromocytomas might be sporadic or genetic. Genetic pheochromocytoma is associated with multiple endocrine neoplasia (MEN) type 2A, MEN type 2B, and von Hippel-Lindau (VHL) disease. RET mutations are identified in more than 90% of index cases of MEN2 and familial medullary thyroid cancer and in about 4-12% of apparent sporadic cases. Here, we report a 54-year-old man presenting with pheochromocytoma and renal cell carcinoma, who was identified as having a novel missense RET mutation.

Resistance to Thyroid Hormone Syndrome Mutation in THRB and THRA: A Review

  • Jung Eun Moon
    • Journal of Interdisciplinary Genomics
    • /
    • v.5 no.2
    • /
    • pp.32-34
    • /
    • 2023
  • Resistance to thyroid hormone syndrome (RTH) is a genetic disease caused by the mutation of either the thyroid hormone receptor-β (THRB) gene or the thyroid hormone receptor-α (THRA) gene. RTH caused by THRB mutations (RTH-β) is characterized by the target tissue's response to thyroid hormone, high levels of triiodothyronine and/or thyroxine, and inappropriate secretion of thyroid-stimulating hormone (TSH). THRA mutation is characterized by hypothyroidism that affects gastrointestinal, neurological, skeletal, and myocardial functions. Most patients do not require treatment, and some patients may benefit from medication therapy. These syndromes are characterized by decreased tissue sensitivity to thyroid hormones, generating various clinical manifestations. Thus, clinical changes of resistance to thyroid hormones must be recognized and differentiated, and an approach to the practice of personalized medicine through an interdisciplinary approach is needed.

The Similarities and Differences between Intracranial and Spinal Ependymomas : A Review from a Genetic Research Perspective

  • Lee, Chang-Hyun;Chung, Chun Kee;Ohn, Jung Hun;Kim, Chi Heon
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.2
    • /
    • pp.83-90
    • /
    • 2016
  • Ependymomas occur in both the brain and spine. The prognosis of these tumors sometimes differs for different locations. The genetic landscape of ependymoma is very heterogeneous despite the similarity of histopathologic findings. In this review, we describe the genetic differences between spinal ependymomas and their intracranial counterparts to better understand their prognosis. From the literature review, many studies have reported that spinal cord ependymoma might be associated with NF2 mutation, NEFL overexpression, Merlin loss, and 9q gain. In myxopapillary ependymoma, NEFL and HOXB13 overexpression were reported to be associated. Prior studies have identified HIC-1 methylation, 4.1B deletion, and 4.1R loss as common features in intracranial ependymoma. Supratentorial ependymoma is usually characterized by NOTCH-1 mutation and p75 expression. TNC mutation, no hypermethylation of RASSF1A, and GFAP/NeuN expression may be diagnostic clues of posterior fossa ependymoma. Although MEN1, TP53, and PTEN mutations are rarely reported in ependymoma, they may be related to a poor prognosis, such as recurrence or metastasis. Spinal ependymoma has been found to be quite different from intracranial ependymoma in genetic studies, and the favorable prognosis in spinal ependymoma may be the result of the genetic differences. A more detailed understanding of these various genetic aberrations may enable the identification of more specific prognostic markers as well as the development of customized targeted therapies.

Genetic Analysis of absR, a new abs locus of Streptomyces coelicolor

  • Park, Uhn-Mee;Suh, Joo-Won;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.169-175
    • /
    • 2000
  • The filamentous soil bacterium Streptomyces coelicolor is known to produce four distinct antibiotics. The simultaneous global regulation for the biosynthesis of those four antibiotics was previously confirmed by absA and absB mutations that blocked all four antibiotics' biosynthesis without influencing their morphological differentiation. To study the complex regulatory cascade that controls the secondary metabolism in Streptomyces, a new abs-like mutation was characterized. namely absR, which is slightly leaky on a complete R2YE medium, yet tight on a minimal medium. A genetic analysis of the absR locus indicated that it is located at 10 o'clock on the genetic map, near the site of absA. A cloned copy of the absA gene that encoded bacterial two-component regulatory kinases did not restore antibiotic biosyntheis to the absR mutant. Accordingly, it is proposed that absR is another abs-type mutation which is less tight than the previously identified absA or absB mutations income medium conditions, and can be used to characterize another global regulatory gene for secondary metabolete formation in S. coelicolor.

  • PDF

A familial case with brachydactyly type C with a GDF5 mutation

  • Yeh, Hye Ryun;Lee, Beom Hee;Kim, Ja Hye;Cho, Ja Hyang;Kim, Gu-Hwan;Kim, Jae-Min;Choi, In-Hee;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.11 no.1
    • /
    • pp.27-30
    • /
    • 2014
  • Brachydactyly type C is a limb malformation characterized by shortening of the second, third, and fifth middle and/or proximal phalanges, but it has variable phenotypic expressivity. Mutations in the growth differentiation factor-5 (GDF5) gene cause isolated brachydactyly C. Herein, we report a familial case with isolated brachydactyly type C characterized by brachymesophalangy of both second and third digits, with a GDF5 missense mutation, and discuss the phenotypic variability of the condition. Identifying more cases with genetic confirmation will help elucidate the clinical and genetic characteristics of this condition in the Korean population.

Identification of a novel frameshift mutation (L345Sfs*15) in a Korean neonate with methylmalonic acidemia

  • Kim, Young A;Kim, Ji-Yong;Kim, Yoo-Mi;Cheon, Chong Kun
    • Journal of Genetic Medicine
    • /
    • v.14 no.2
    • /
    • pp.80-85
    • /
    • 2017
  • Methylmalonic acidemia (MMA) is an autosomal recessive metabolic disorder characterized by an abnormal accumulation of methylmalonyl-CoA and methylmalonate in body fluids without hyperhomocysteinemia. Cardiac disease is a rarely known lethal complication of MMA, herein, we report a Korean neonate diagnosed with MMA on the basis of biochemical and genetic findings, who developed cardiomyopathy, resulting in sudden death. The patient presented vomiting and lethargy at 3 days of age. Initially, the patient had an increased plasma propionylcarnitine/acetylcarnitine concentration ratio of 0.49 in a tandem mass spectrometry analysis and an elevated ammonia level of $537{\mu}mol/L$. Urine organic acid analysis showed increased excretion of methylmalonate. Subsequent sequence analysis of the methylmalonyl-CoA mutase (MUT) gene revealed compound heterozygous mutations c.323G>A (p.Arg108His) in exon 1 and c.1033_1034del (p. Leu345Serfs*15) in exon 4, the latter being a novel mutation. In summary, this is the first case of MMA and cardiomyopathy in Korea that was confirmed by genetic analysis to involve a novel MUT mutation.

Expression of Microsatellite Instability (MSI) from Colorectal Carcinoma Patients

  • Lee, Jae Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.46 no.2
    • /
    • pp.59-63
    • /
    • 2014
  • The death toll of Colorectal Carcinoma in Korea was 1,826 and 7,721 in the years 1992 and 2011, respectively. This rate of increase was shown to be more than 4.23 times higher than that of any other form of cancer. Therefore, Colorectal Carcinoma requires various diagnostic methods, and Microsatellite Instability (MSI) was applied as a new diagnostic tool. From this study with several microsatellite markers, only marker #13 was detected and observed D13S160 13% (4/30), D13S292 13% (4/30), D13S153 10% (3/30) in order. From the results of amplication with microsatellite marker, D13S292 37% (11/30), D13S153 33% (10/30), D13S160 33% (10/30) in order were shown. The appearance of a genetic mutation, which depends on the loci of Colorectal Carcinoma, was shown amplication from rectal cancer (3.77) which was higher than that of right Colorectal Carcinoma (2.08) (p<0.018). The genetic mutation with lymph node (4.13) appeared higher than normal (1.93) (p<0.001). There were no great differences in the genetic mutation dependent on disease, histological classification and increased group of serum CEA. Accordingly, it is suggested that the correct primers, which can evaluate MSI well from colorectal carcinoma, should be chosen and that MSI be considered a good prognosis and quality control tool.

A novel frameshift mutation of PRRT2 in a family with infantile convulsions and choreoathetosis syndrome: c.640delinsCC (p.Ala214ProfsTer11)

  • Park, Bo Mi;Kim, Young Ok;Kim, Myeong-Kyu;Woo, Young Jong
    • Journal of Genetic Medicine
    • /
    • v.16 no.1
    • /
    • pp.19-22
    • /
    • 2019
  • The infantile convulsions and choreoathetosis (ICCA) syndrome is defined when two overlapping clinical features of benign familial infantile epilepsy (BFIE) and paroxysmal kinesigenic dyskinesia (PKD) are present in an individual or a family. Since the gene encoding proline-rich transmembrane protein 2 (PRRT2) was first identified in Han Chinese families with PKD, mutations of PRRT2 have additionally been reported in patients with BFIE and ICCA. We attempted to identify the genetic etiology in an ICCA family where the proband, her elder sister, and a maternal male cousin had BFIE, and her mother had PKD. Whole-exome sequencing performed in the proband and her sister and mother identified a novel pathogenic mutation of PRRT2 (c.640delinsCC; p.Ala214ProfsTer11), which was verified by Sanger sequencing. This frameshift PRRT2 mutation located near the genetic hot spot of base 649_650 results in the premature termination of the protein, as do most previously reported mutations in BFIE, ICCA, and PKD.

Axonal Charcot-Marie-Tooth case with a novel heterozygous variant in MFN2 assessed by the MutationDistiller

  • Ryu, Ho-Sung;Lee, Yun-Jeong;Lee, Jong-Mok
    • Journal of Genetic Medicine
    • /
    • v.17 no.2
    • /
    • pp.89-91
    • /
    • 2020
  • Charcot-Marie-Tooth (CMT) disease can be divided mainly into demyelination and axonopathy based on the results of the electrophysiological study. Mitofusin 2, encoded by MFN2 gene, has a crucial role in the fusion of mitochondria, which is known to associate with CMT type 2A as one of the axonal forms. We describe a 44-year-old man with progressive weakness on bilateral legs after noticing foot drop in his early teen. When we examined him at 45 years of age, he presented atrophy on entire legs and with distal muscle weakness on limbs. The nerve conduction study revealed severely decreased amplitude on motor nerve ranging from 0.2 to 4.5 mV, while conduction velocity remained more than 30.4 m/s. The whole-exome sequencing revealed a novel variant c.2228G>T in MFN2 by efficient genetic analysis tool, MutationDistiller. This report will not only expand the mutation spectrum of CMT2A but also introduce a time-saving genetic analysis tool.

The Maximum Scatter Travelling Salesman Problem: A Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Asaad Shakir Hameed;Modhi Lafta Mutar;Mohammed F. Alrifaie;Mundher Mohammed Taresh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.193-201
    • /
    • 2023
  • In this paper, we consider the maximum scatter traveling salesman problem (MSTSP), a travelling salesman problem (TSP) variant. The problem aims to maximize the minimum length edge in a salesman's tour that travels each city only once in a network. It is a very complicated NP-hard problem, and hence, exact solutions can be found for small sized problems only. For large-sized problems, heuristic algorithms must be applied, and genetic algorithms (GAs) are found to be very successfully to deal with such problems. So, this paper develops a hybrid GA (HGA) for solving the problem. Our proposed HGA uses sequential sampling algorithm along with 2-opt search for initial population generation, sequential constructive crossover, adaptive mutation, randomly selected one of three local search approaches, and the partially mapped crossover along with swap mutation for perturbation procedure to find better quality solution to the MSTSP. Finally, the suggested HGA is compared with a state-of-art algorithm by solving some TSPLIB symmetric instances of many sizes. Our computational experience reveals that the suggested HGA is better. Further, we provide solutions to some asymmetric TSPLIB instances of many sizes.