• 제목/요약/키워드: genetic model

검색결과 2,664건 처리시간 0.045초

Sire-maternal Grandsire Model and Sire Model in Estimation of Genetic Parameters for Average Daily Gain and Carcass Traits of Japanese Black Cattle

  • Kim, Jong-Bok;Lee, Chaeyoung;Tsuyuki, Tsutomu;Shimogiri, Takeshi;Okamoto, Shin;Maeda, Yoshizane
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권12호
    • /
    • pp.1678-1684
    • /
    • 2006
  • The objectives of this study were to estimate genetic parameters and sire breeding values for average daily gain (ADG) and carcass traits using sire-maternal grandsire model with REML approach, sire model with REML approach, sire model without relationships among sires and with REML and ANOVA approach, and to investigate advantages and disadvantages of these methods. Data were collected from 42,325 Japanese Black steers and heifers finished and slaughtered from 1991 to 2004. Traits analyzed in this study were average daily gain (ADG) during the fattening period, live weight at slaughter (LW), cold carcass weight (CW), estimated lean yield percentage (LYE), longissimus muscle area (LMA), subcutaneous fat thickness (SFT), rib thickness (RT), and marbling score (BMS). Bivariate analyses were also performed to obtain genetic and phenotypic correlation coefficients among traits. Estimated breeding values were obtained from each model, and simple and rank correlations among breeding values from each model were calculated. Estimates of heritability using the four models ranged from 0.25 to 0.31 in ADG, from 0.21 to 0.24 in LW, from 0.23 to 0.27 in CW, from 0.10 to 0.17 in DP, from 0.40 to 0.42 in LYE, from 0.19 to 0.31 in LMA, from 0.31 to 0.34 in SFT, from 0.26 to 0.33 in RT, and from 0.18 to 0.44 in BMS. The differences in heritability estimates using the four models seemed to be feasible in ADG, CW, DP, LMA, RT, and BMS. Genetic correlation coefficients of ADG with CW, SFT, RT and BMS were moderate to high and positive while the genetic correlation coefficients between ADG and LYE was low and negative. Correlation coefficients of BMS with SFT were negligible for both genetic and phenotypic correlations. The correlations of estimates evaluated from sire models with those from sire-maternal grandsire model were not large enough to convincing that breeding values using a sire model were corresponding to those using a sire-maternal grand sire model. If information of maternal grand sires are not available, the sire model with incomplete pedigree information included only sire of sire (Model 2) is optimal among the sire models evaluated in this study.

Identifying early indicator traits for sow longevity using a linear-threshold model in Thai Large White and Landrace females

  • Plaengkaeo, Suppasit;Duangjinda, Monchai;Stalder, Kenneth J.
    • Animal Bioscience
    • /
    • 제34권1호
    • /
    • pp.20-25
    • /
    • 2021
  • Objective: The objective of the study was to investigate the possibility of utilizing an early litter size trait as an indirect selection trait for longevity and to estimate genetic parameters between sow stayability and litter size at different parities using a linear-threshold model for longevity in Thai Large White (LW) and Landrace (LR) populations. Methods: The data included litter size at first, second, and third parities (NBA1, NBA2, and NBA3) and sow stayability from first to fourth farrowings (STAY14). The data was obtained from 10,794 LR and 9,475 LW sows. Genetic parameters were estimated using the multiple-trait animal model. A linear-threshold model was used in which NBA1, NBA2, and NBA3 were continuous traits, while STAY14 was considered a binary trait. Results: Heritabilities for litter size were low and ranged from 0.01 to 0.06 for both LR and LW breeds. Similarly, heritabilities for stayability were low for both breeds. Genetic associations between litter size and stayability ranged from 0.43 to 0.65 for LR populations and 0.12 to 0.55 for LW populations. The genetic correlation between NBA1 and STAY14 was moderate and in a favorable direction for both LR and LW breeds (0.65 and 0.55, respectively). Conclusion: A linear-threshold model could be utilized to analyze litter size and sow stayability traits. Furthermore, selection for litter size at first parity, which was the genetic trait correlated with longevity, is possible when one attempts to improve lifetime productivity in Thai swine populations.

Genetic Models for Carcass Traits with Different Slaughter Endpoints in Selected Hanwoo Herds I. Linear Covariance Models

  • Choy, Y.H.;Lee, C.W.;Kim, H.C.;Choi, S.B.;Choi, J.G.;Hwang, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권9호
    • /
    • pp.1227-1232
    • /
    • 2008
  • Carcass characteristics data of Hanwoo (N = 1,084) were collected from two stations of the National Livestock Institute of Animal Science (NIAS), Korea and records from thirteen individual cow-calf operators were analyzed to estimate variance and covariance components and the effect of different slaughter endpoints. Carcass traits analyzed were cold carcass weight (CWT, kg), REA (rib eye area, cm2), back fat thickness (mm) and marbling score (1-7). Four different models were examined. All models included sex and contemporary group as fixed effects and the animal's direct genetic potential and environment as random effects. The first model fitted a linear covariate of age at slaughter. The second model fitted both linear and quadratic covariates of age at slaughter. The third model fitted a linear covariate of body weight at slaughter. The fourth model fitted both linear covariates of age at slaughter and body weight at slaughter. Variance components were estimated using the REML procedure with Gibb's sampler. Heritability estimate of CWT was in the range of 0.08-0.11 depending on the model applied. Heritability estimates of BF, REA and MS were in the ranges of 0.23-0.28, 0.19-0.26, and 0.44-0.45, respectively. Genetic correlations between CWT and BF, between CWT and REA, and between CWT and MS were in the ranges of -0.33 - -0.14, 0.73-0.84, and -0.01- 0.11, respectively. Genetic correlations between REA and BF, between MS and BF and between REA and MS were in the ranges of -0.82 ~ -0.72, 0.04~0.28 and -0.08 ~ -0.02, respectively. Variance and covariance components estimated varied by model with different slaughter endpoints. Body weight endpoint was more effective for direct selection in favor of yield traits and body weight endpoints affected more of the correlated response to selection for the traits of yield and quality of edible portion of beef.

An Optimized User Behavior Prediction Model Using Genetic Algorithm On Mobile Web Structure

  • Hussan, M.I. Thariq;Kalaavathi, B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1963-1978
    • /
    • 2015
  • With the advancement of mobile web environments, identification and analysis of the user behavior play a significant role and remains a challenging task to implement with variations observed in the model. This paper presents an efficient method for mining optimized user behavior prediction model using genetic algorithm on mobile web structure. The framework of optimized user behavior prediction model integrates the temporary and permanent register information and is stored immediately in the form of integrated logs which have higher precision and minimize the time for determining user behavior. Then by applying the temporal characteristics, suitable time interval table is obtained by segmenting the logs. The suitable time interval table that split the huge data logs is obtained using genetic algorithm. Existing cluster based temporal mobile sequential arrangement provide efficiency without bringing down the accuracy but compromise precision during the prediction of user behavior. To efficiently discover the mobile users' behavior, prediction model is associated with region and requested services, a method called optimized user behavior Prediction Model using Genetic Algorithm (PM-GA) on mobile web structure is introduced. This paper also provides a technique called MAA during the increase in the number of models related to the region and requested services are observed. Based on our analysis, we content that PM-GA provides improved performance in terms of precision, number of mobile models generated, execution time and increasing the prediction accuracy. Experiments are conducted with different parameter on real dataset in mobile web environment. Analytical and empirical result offers an efficient and effective mining and prediction of user behavior prediction model on mobile web structure.

뉴로 유전자 결합모형을 이용한 상수도 1일 급수량 예측 (Prediction of Daily Water Supply Using Neuro Genetic Hybrid Model)

  • 이경훈;강일환;문병석;박진금
    • 환경영향평가
    • /
    • 제14권4호
    • /
    • pp.157-164
    • /
    • 2005
  • Existing models that predict of Daily water supply include statistical models and neural network model. The neural network model was more effective than the statistical models. Only neural network model, which predict of Daily water supply, is focused on estimation of the operational control. Neural network model takes long learning time and gets into local minimum. This study proposes Neuro Genetic hybrid model which a combination of genetic algorithm and neural network. Hybrid model makes up for neural network's shortcomings. In this study, the amount of supply, the mean temperature and the population of the area supplied with water are use for neural network's learning patterns for prediction. RMSE(Root Mean Square Error) is used for a MOE(Measure Of Effectiveness). The comparison of the two models showed that the predicting capability of Hybrid model is more effective than that of neural network model. The proposed hybrid model is able to predict of Daily water, thus it can apply real time estimation of operational control of water works and water drain pipes. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 11.81% and the average error was lower than 1.76%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

유전자 알고리즘을 이용한 장·단기 유출모형의 매개변수 최적화 (Parameter Optimization of Long and Short Term Runoff Models Using Genetic Algorithm)

  • 김선주;지용근;김필식
    • 한국농공학회논문집
    • /
    • 제46권5호
    • /
    • pp.41-52
    • /
    • 2004
  • In this study, parameters of long and short term runoff model were optimized using genetic algorithm as a basic research for integrated water management in a watershed. In case of Korea where drought and flood occurr frequently, the integrated water management is necessary to minimize possible damage of drought and flood. Modified TANK model was optimized as a long term runoff model and storage-function model was optimized as a short term runoff model. Besides distinguished parameters were applied to modified TANK model for supplementing defect that the model estimates less runoff in the storm period. As a result of application, simulated long and short term runoff results showed 7% and 5% improvement compared with before optimized on the average. In case of modified TANK model using distinguished parameters, the simulated runoff after optimized showed more interrelationship than before optimized. Therefore, modified TANK model can be applied for the long term water balance as an integrated water management in a watershed. In case of storage-function model, simulated runoff in the storm period showed high interrelationship with observed one. These optimized models can be applied for the runoff analysis of watershed.

컨테이너 터미널의 자원 할당계획에 관한 연구 (Study on the Resource Allocation Planning of Container Terminal)

  • 장양자;장성용;양창호;박진우
    • 대한산업공학회지
    • /
    • 제28권1호
    • /
    • pp.14-24
    • /
    • 2002
  • We focus on resource allocation planning in container terminal operation planning problems and present network design model and genetic algorithm. We present a network design model in which arc capacities must be properly dimensioned to sustain the container traffic. This model supports various planning aspects of container terminal and brings in a very general form. The integer programming model of network design can be extended to accommodate vertical or horizontal yard configuration by adding constraints such as restricting the sum of yard cranes allocated to a block of yards. We devise a genetic algorithm for the network design model in which genes have the form of general integers instead of binary integers. In computational experiments, it is found that the genetic algorithm can produce very good solution compared to the optimal solution obtained by CPLEX in terms of computation time and solution quality. This algorithm can be used to generate many alternatives of a resource allocation plan for the container terminal and to evaluate the alternatives using various tools such as simulation.

유전자 알고리즘을 이용한 대중교통 통행배정모형 개발 (A Transit Assignment Model using Genetic Algorithm)

  • 이신해;최인준;이승재;임강원
    • 대한교통학회지
    • /
    • 제21권1호
    • /
    • pp.65-75
    • /
    • 2003
  • 교통혼잡 문제가 점점 심각해짐에 따라 대중교통의 중요성은 날로 부각되며, 대중교통을 지원하기 위한 정책들이 속속 입안되고 있어 대중교통을 심도 있게 분석할 수 있는 틀의 개발은 필연적이라 할 수 있다. 이에 본 연구는 대중교통의 특성을 고려하는 대중교통 통행배정모형의 개발을 목적으로 수행되었다. 본 연구에서 개발한 대중교통 통행배정모형은 기존의 대중교통 통행배정모형이 개별차량과 다른 대중교통의 특성을 정확히 반영하고 있지 못하다는 한계를 극복하고자, 최적경로 탐색에는 유전자 알고리즘(Genetic Algorithm)을 통행량 배정에는 로짓모형을 기반으로 한 확률적 통행량 배정모형(Stochastic Network Loading Model)을 이용하였다.

A modified strategy for DNA coding based genetic algorithm and its experiment

  • Kyungwon Jang;Taechon Ahn;Lee, Dongyoon;Kim, Seonik;Jinhyun Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.70.1-70
    • /
    • 2002
  • In the fuzzy applications and theories, it is very important to consider how to design the optimal fuzzy model from short training data, in order to construct the reasonable fuzzy model for identifying the practical process. There are several concerns to be confirmed for efficient fuzzy model design. One of concern is the optimization problem of the fuzzy model. In various applications, the genetic algorithm is widely applied to obtain optimal fuzzy model and other cases that adopt evolutionary mechanism of the nature. If we use natural selection and multiplication operation of the genetic algorithm, early convergence to local minimum can be occurred. In other word, we can find only optimum...

  • PDF

유전 프로그래밍 기반 단기 기온 예보의 보정 기법 (Genetic Programming Based Compensation Technique for Short-range Temperature Prediction)

  • 현병용;현수환;이용희;서기성
    • 전기학회논문지
    • /
    • 제61권11호
    • /
    • pp.1682-1688
    • /
    • 2012
  • This paper introduces a GP(Genetic Programming) based robust technique for temperature compensation in short-range prediction. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, because forecast models do not reliably determine weather conditions. Most of MOS use a linear regression to compensate a prediction model, therefore it is hard to manage an irregular nature of prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP is suggested. The purpose of this study is to evaluate the accuracy of the estimation by a GP based nonlinear MOS for 3 days temperatures in Korean regions. This method is then compared to the UM model and has shown superior results. The training period of 2007-2009 summer is used, and the data of 2010 summer is adopted for verification.