• Title/Summary/Keyword: genetic map

Search Result 297, Processing Time 0.024 seconds

Construction of a Genetic Linkage Map in Radish(Raphanus sativus L.) Using RAPD Markers (RAPD 마커를 이용한 무의 유전자지도 작성)

  • Ahn, Choon-Hee;Choi, Su-Ryun;Lim, Yong-Pyo;Chung, Hae-Joon;Yae, Byeong-Woo;Yoon, Wha-Mo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.151-159
    • /
    • 2002
  • Genetic map and molecular marker have a great importance in improving and facilitating crop breeding program as well as in genome analysis and map-based cloning of genes representing desirable characters. This study aimed at developing RAPD markers and constructing a genetic linkage map using 82 BC$_1$F$_1$individuals originated from the cross between '835' and B$_2$in radish (Raphanus sativus L.). One of the parents for genetic linkage map construction, '835'(P$_1$) of egg type is susceptible to Fusarium wilt and have medium resistance to virus infection and the other parent, B$_2$(P$_2$) of round type, is susceptible to Fusarium wilt and virus, Screening of 394 RAPD primers in BC$_1$F$_1$) population resulted in selecting 128 polymorphic markers which displayed 1:1 segregation pattern. Two markers failed to display 1:1 segregation and showed the segregation ratio skewed to maternal genotype. Selected markers were categorized into 14 linkage group based on LOD score represented by MAPMAKER/EXP program. Five groups composed of single marker among them were excluded from the linkage map, and consequently, the remaining groups are well matched with the number of radish chromosome (n=9). The linkage map constructed with 128 markers covers 1,688.3 cM and the average distance between markers was 13.8 cM. For developing STS marker, we determined the partial nucleotide sequence of OPE10 marker at both ends and designed a oligonucleotide primer pair based on this sequence. STS PCR using the primer pair displayed a single, clear band of which segregation is perfectly matched with that of OPE10 marker. This implies that RAPD markers could readily convert into clear and reliable STS markers.

Characterization of Single Nucleotide Polymorphisms in 55 Disease-Associated Genes in a Korean Population

  • Lee, Seung-Ku;Kim, Hyoun-Geun;Kang, Jason-J.;Oh, Won-Il;Oh, Berm-Seok;Kwack, Kyu-Bum
    • Genomics & Informatics
    • /
    • v.5 no.4
    • /
    • pp.152-160
    • /
    • 2007
  • Most common diseases are caused by multiple genetic and environmental factors. Among the genetic factors, single nucleotide polymorphisms (SNPs) are common DNA sequence variations in individuals and can serve as important genetic markers. Recently, investigations of gene-based and whole genome-based SNPs have been applied to association studies for marker discovery. However, SNPs are so population-specific that the association needs to be verified. Fifty-five genes and 384 SNPs were selected based on association with disease. Genotypes of 337 SNPs in candidate genes were determined using Illumina Sentrix Array Matrix (SAM) chips by an allele-specific extension method in 364 unrelated Korean individuals. Allelic frequencies of SNPs were compared with those of other populations obtained from the International HapMap database. Minor allele frequencies, linkage disequilibrium blocks, tagSNPs, and haplotypes of functional candidate SNPs in 55 genetic disease-associated genes were provided. Our data may provide useful information for the selection of genetic markers for gene-based genetic disease-association studies of the Korean population.

Genetic Algorithm based hyperparameter tuned CNN for identifying IoT intrusions

  • Alexander. R;Pradeep Mohan Kumar. K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.755-778
    • /
    • 2024
  • In recent years, the number of devices being connected to the internet has grown enormously, as has the intrusive behavior in the network. Thus, it is important for intrusion detection systems to report all intrusive behavior. Using deep learning and machine learning algorithms, intrusion detection systems are able to perform well in identifying attacks. However, the concern with these deep learning algorithms is their inability to identify a suitable network based on traffic volume, which requires manual changing of hyperparameters, which consumes a lot of time and effort. So, to address this, this paper offers a solution using the extended compact genetic algorithm for the automatic tuning of the hyperparameters. The novelty in this work comes in the form of modeling the problem of identifying attacks as a multi-objective optimization problem and the usage of linkage learning for solving the optimization problem. The solution is obtained using the feature map-based Convolutional Neural Network that gets encoded into genes, and using the extended compact genetic algorithm the model is optimized for the detection accuracy and latency. The CIC-IDS-2017 and 2018 datasets are used to verify the hypothesis, and the most recent analysis yielded a substantial F1 score of 99.23%. Response time, CPU, and memory consumption evaluations are done to demonstrate the suitability of this model in a fog environment.

A Stereo Matching Based on A Genetic Algorithm Using A Multi-resolution Method and AD-Census (다해상도 가법과 AD-Census를 이용한 유전 알고리즘 기반의 스테레오 정합)

  • Hong, Seok-Keun;Cho, Seok-Je
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • Stereo correspondence is the central problem of stereo vision. In this paper, we propose a stereo matching scheme based on a genetic algorithm using a multi-resolution method and AD-Census. The proposed approach considers the matching environment as an optimization problem and finds the disparity by using a genetic algorithm And adaptive chronosome structure using edge pixels and crossover mechanism are employed in this technique. A cost function is composes of certain constraints whice are commonly used in stereo matching. AD-Census measure is applied to reduce disparity error. To increase the efficiency of process, we apply image pyramid method to stereo matching and calculate the initial disparity map at the coarsest resolution. Then initial disparity map is propagated to the next finer resolution, interpolated and performed disparity refinement using local feature vector. We valid our method not only reduces the search time for correspondence compared with conventional GA-based method but also ensures the validity of matching.

Genome Research on Peach and Pear

  • Hayashi Tateki;Yamamoto Toshiya
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04a
    • /
    • pp.101-109
    • /
    • 2002
  • A lot of SSRs (simple sequence repeats) in peach and pear from enriched genomic libraries and in peach from a cDNA library were developed. These SSRs were applied to other related species, giving phenograms of 52 Prunus and 60 pear accessions. Apple SSRs could also be successfully used in Pyrus spp. Thirteen morphological traits were characterized on the basis of the linkage map obtained from an $F_2$ population of peach. This map was compiled with those morphological markers and 83 DNA markers, including SSR markers used as anchor loci, to compare different peach maps. Molecular markers tightly linked to new root-knot nematode resistance genes were also found. A linkage map including disease-related genes, pear scab resistance and black spot susceptibility, in the Japanese pear Kinchaku were constructed using 118 RAPD markers. Another linkage map, of the European pear Bartlett, was also constructed with 226 markers, including 49 SSRs from pear, apple, peach and chewy. Maps of other Japanese pear cultivars, i.e., Kousui and Housui, were also constructed. These maps were the first results of pear species.

  • PDF

Genome Research on Peach and Pear

  • Hayashi, Tateki;Yamamoto, Toshiya
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.101-109
    • /
    • 2002
  • A lot of SSRs (simple sequence repeats) in peach and pear from enriched genomic libraries and in peach from a cDHA library were developed. These SSRs were applied to other related species, giving phenograms of 52 Prunus and 60 pear accessions. Apple SSRs could also be successfully used in Pyrus spp. Thirteen morphological traits were characterized on the basis of the linkage map obtained from an Fa population of peach. This map was compiled with those morphological markers and 83 DHA markers, including SSR markers used as anchor loci, to compare different peach maps. Molecular markers tightly linked to new root-knot nematode resistance genes were also found. A linkage map including disease-related genes, pear scab resistance and black spot susceptibility, in the Japanese pear Kinchaku were constructed using 118 RAPD markers. Another linkage map, of the European pear Bartlett, was also constructed with 226 markers, including 49 SSRs from pear, apple, peach and cherry. Maps of other Japanese pear cultivars, i.e., Kousui and Housui, were also constructed. These maps were the first results of pear species.

  • PDF

Genetic Analysis and its Application of Rhodosprillum rubrum PKY1 Plasmid (Rhodospirillum rubrum Plasmid pKY1의 유전정보 분석과 그의 활용에 관한 연구)

  • 김복환;김정목
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.172-177
    • /
    • 2004
  • Photosynthetic bacteria, Rhodospirillum rubrum, have been reported to change their metabolic patterns depend-ing on the light condition. The genetic approach for such a metabolic change is one of main subject in pho-tosynthetic bacteria. It has been reported that the extrachromosomal plasmid might be related to this metabolic regulation. In this study, we have determined the partial sequences of R. rubrum plasmid pKYl with HindIII fragments and the predicted pKYl ORFs and physical map. We found the 8 putative proteins related to the genetic recombination of bacterium, which is reported to the alternative gene expression. Our results suggest that the genes located in pKYl are possibly involved in the metabolic switch according to the photocondition.

Genetic Mapping of Hypernodulation in Soybean Mutant SS2-2

  • Lee, Suk-Ha;Ha, Bo-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.5
    • /
    • pp.416-419
    • /
    • 2001
  • Hypernodulation soybean mutant, SS2-2, is characterized with greater nodulation and nitrogen fixing ability in the root nodule than its wild type, Shinpaldalkong 2. The present study was performed to identify a genetic locus conferring hypernodulation in soybean mutant SS2-2 and to determine whether the gene controlling the hypernodulation of SS2-2 is allelic to that controlling the supernodulation of nts382 mutant. Hybridization studies between SS2-2 and Taekwangkong revealed that the recessive gene was responsible for the hypernodulation character in soybean mutant SS2-2. Allelism was also tested by crossing supernodulating mutant nts382 and hypernodulating mutant SS2-2 that both hypernodulation and supernodulation genes were likely controlled by an identical locus. Molecular marker mapping of hypernodulation gene in SS2-2 using SSR markers confirmed that the gene conferring hypernodulation was located at the same loci with the gene conferring supernodulation. It is interesting to note that the same gene controlled the super- and hyper-nodulation characters, although SS2-2 and nts 382 exhibited differences in the amount of nodulation in the root system. Further genetic studies should be needed to clarify the genetic regulation of super- and hyper-nodulation in soybean.

  • PDF

Cloning and Expression of the Gene Encoding Mannose Enzyme II of the Corynebacterium glutamicum Phosphoenolpyruvate-Dependent Phosphotransferase System in Escherichia coli

  • Lee, Jung-Kee;Sung, Moon-Hee;Yoon, Ki-Hong;Pan, Jae-Gu;Yu, Ju-Hyun;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 1993
  • The gene for mannose enzyme II of phosphoenolpyruvate-dependent phosphotransferase system from Corynebacterium glutamicum KCTC 1445 was cloned into Escherichia coli ZSC113 using plasmid pBR 322. The recombinant plasmid, designated pCTS3, contained 2.2 kb DNA fragment, and the physical map of the cloned DNA fragment was determined. The E. coli ptsM ptsG mutant transformed with pCTS3 restored glucose and mannose fermentation ability, and grew well on these sugars as the sole carbon source in the minimal medium. The transform ant harboring pCTS3 showed a PTS-mediated repression of growth on maltose by mannose analogue, 2-deoxyglucose. The specificity of the response to 2DG therefore indicates that the cloned DNA fragment carries mannose enzyme II gene.

  • PDF