• 제목/요약/키워드: genetic fuzzy

검색결과 783건 처리시간 0.026초

진화 알고리즘과 퍼지 논리를 이용한 이동로봇의 개선된 맵 작성 (Improved Map construction for Mobile Robot using Genetic Algorithm and Fuzzy)

  • 손정수;정석윤;진광식;윤태성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2451-2453
    • /
    • 2002
  • In this paper, we present an infrared sensors aided map building method for mobile robot using genetic algorithm and fuzzy logic. Existing Bayesian update model using ultrasonic sensors only has a problem of the quality of map being degraded in the wall with irregularity which is caused by the wide beam width of sonar waves and Gaussian probability distribution. In order to solve this problem we propose an improved method of map building using supplementary infrared sensors. In the method, wide beam width of sonar waves is divided by infrared sensors and probability is distributed according to infrared sensors' information using fuzzy logic and genetic algorithm.

  • PDF

HCM 및 최적 알고리즘을 이용한 퍼지-뉴럴네트워크구조의 설계 (Design of Fuzzy-Neural Networks Structure using HCM and Optimization Algorithm)

  • 윤기찬;박병준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.654-656
    • /
    • 1998
  • This paper presents an optimal identification method of nonlinear and complex system that is based on fuzzy-neural network(FNN). The FNN used simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM Algorithm to find initial parameters of membership function. And then to obtain optimal parameters, we use the genetic algorithm. Genetic algorithm is a random search algorithm which can find the global optimum without converging to local optimum. The parameters such as membership functions, learning rates and momentum coefficients are easily adjusted using the genetic algorithms. Also, the performance index with weighted value is introduced to achieve a meaningful balance between approximation and generalization abilities of the model. To evaluate the performance of the FNN, we use the time series data for 9as furnace and the sewage treatment process.

  • PDF

A Fuzzy Genetic Classifier for Recognition of Confusing Handwritten Numerals 4,6, and 9

  • Shin, Dae-Jung;Na, Seung-You;Kim, Sun-Hee
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.11-14
    • /
    • 1995
  • A Fuzzy Classifier which deals with very confusing objects is proposed. Naturally this classifier heavily relies on the nulti-feature decision-making procedure. For a simple example, this classifier is applied to the recognition of confusing handwritten numerals 4,6 and 9 The characteristic variables used in this paper are the existence of a loop and the relative location of the starting or ending points(SEP). Thus each sample of handwritten numerals 4, 6 and 9 is classified in one of the 6 groups which are divided according to the sample structure. Each group has its own classifying rules. Also the method of rule-generation using genetic algorithms in each group is proposed.

  • PDF

Using Genetic-Fuzzy Methods To Develop User-preference Optimal Route Search Algorithm

  • Choi, Gyoo-Seok;Park, Jong-jin
    • 정보기술과데이타베이스저널
    • /
    • 제7권1호
    • /
    • pp.42-53
    • /
    • 2000
  • The major goal of this research is to develop an optimal route search algorithm for an intelligent route guidance system, one sub-area of ITS. ITS stands for intelligent Transportation System. ITS offers a fundamental solution to various issues concerning transportation and it will eventually help comfortable and swift moves of drivers by receiving and transmitting information on humans, roads and automobiles. Genetic algorithm, and fuzzy logic are utilized in order to implement the proposed algorithm. Using genetic algorithm, the proposed algorithm searches shortest routes in terms of travel time in consideration of stochastic traffic volume, diverse turn constraints, etc. Then using fuzzy logic, it selects driver-preference optimal route among the candidate routes searched by GA, taking into account various driver's preferences such as difficulty degree of driving and surrounding scenery of road, etc. In order to evaluate this algorithm, a virtual road-traffic network DB with various road attributes is simulated, where the suggested algorithm promptly produces the best route for a driver with reference to his or her preferences.

  • PDF

범룡 퍼지 제어기 자동생성 시스템 개발 및 구현 (Development of Fuzzy Controller Automatic Generation System)

  • 이상형;김은태;권철;박민용
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.792-795
    • /
    • 1999
  • Since the inception of fuzzy control, lots of methods to design fuzzy controller have been reported, However, it is admitted that these methods are tailored to special problems and cannot be used in general control situation. Therefore this paper proposes auromatic generation algorithm of fuzzy control system and develops an automatic fuzzy controller generator. For that purpose, the genetic algorithm is used and it searches for the optimal parameters to design the fuzzy controller

  • PDF

Rule-Based Fuzzy Polynomial Neural Networks in Modeling Software Process Data

  • Park, Byoung-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.321-331
    • /
    • 2003
  • Experimental software datasets describing software projects in terms of their complexity and development time have been the subject of intensive modeling. A number of various modeling methodologies and modeling designs have been proposed including such approaches as neural networks, fuzzy, and fuzzy neural network models. In this study, we introduce the concept of the Rule-based fuzzy polynomial neural networks (RFPNN) as a hybrid modeling architecture and discuss its comprehensive design methodology. The development of the RFPNN dwells on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The architecture of the RFPNN results from a synergistic usage of RFNN and PNN. RFNN contribute to the formation of the premise part of the rule-based structure of the RFPNN. The consequence part of the RFPNN is designed using PNN. We discuss two kinds of RFPNN architectures and propose a comprehensive learning algorithm. In particular, it is shown that this network exhibits a dynamic structure. The experimental results include well-known software data such as the NASA dataset concerning software cost estimation and the one describing software modules of the Medical Imaging System (MIS).

Semi-active structural fuzzy control with MR dampers subjected to near-fault ground motions having forward directivity and fling step

  • Ghaffarzadeh, Hosein
    • Smart Structures and Systems
    • /
    • 제12권6호
    • /
    • pp.595-617
    • /
    • 2013
  • Semi-active control equipments are used to effectually enhance the seismic behavior of structures. Magneto-rheological (MR) dampers are semi-active devices that can be utilized to control the response of structures during seismic loads and have received voracious attention for response suppression. They supply the adaptability of active devices and stability and reliability of passive devices. This paper presents an optimal fuzzy logic control scheme for vibration mitigation of buildings using magneto-rheological dampers subjected to near-fault ground motions. Near-fault features including a directivity pulse in the fault-normal direction and a fling step in the fault-parallel direction are considered in the requisite ground motion records. The membership functions and fuzzy rules of fuzzy controller were optimized by genetic algorithm (GA). Numerical study is performed to analyze the influences of near-fault ground motions on a building that is equipped with MR dampers. Considering the uncontrolled system response as the base line, the proposed method is scrutinized by analogy with that of a conventional maximum dissipation energy (MED) controller to accentuate the effectiveness of the fuzzy logic algorithm. Results reveal that the fuzzy logic controllers can efficiently improve the structural responses and MR dampers are quite promising for reducing seismic responses during near-fault earthquakes.

유전자 알고리즘을 이용한 Multi-HVAC 시스템에 대한 Multi-Fuzzy 제어기 설계 (Design of Multi-Fuzzy Controller Using Genetic Algorithms for Multi-HVAC System)

  • 정승현;최정내;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.303-305
    • /
    • 2006
  • 본 논문은 HVAC(heating, ventilating, and air conditioning) 시스템의 효율성과 안정성에 기초하여, 과열도와 저압을 제어하는 Multi Fuzzy 제어기 설계를 제안한다. HVAC 시스템은 Compressor(압축기), Condenser(응축기), Evaporator(증발기), Expansion Valve(확장 밸브) 로 구성되며, 각각의 기기에 대한 제어가 독립적으로 이루어져 있다. 기존의 제어가 한 제어기를 사용한 단일방식으로 이루어지다보니 HVAC 시스템의 특성인 냉매의 상태가 달라지면 시스템 전반적으로 그 영향이 파급되는 부분까지 고려를 해 주지 못하고, 제어기의 성능이 효율적이고 안정적이지 못했다. 본 논문에서는 HVAC 시스템의 효율과 안정도에 결정적인 영향을 미치는 파열도와 저압을 제어하기 위해, 비선형성이 강하고 불확실하며 복잡한 시스템을 쉽게 제어할 수 있는 Fuzzy 제어기를 구성하여, 3대의 Expansion Valve 와 1대의 Compressor 에서 동시에 제어하는 Multi 제어기를 설계한다. 제안된 Fuzzy 제어기는 이산형 lookup_table 방식과 연속형 간략추론 방식을 사용하여 제어기를 설계하고, 유전자 알고리즘(GAs)을 이용하여 최적의 Fuzzy 제어기의 환산계수를 구한다. 그리고 시뮬레이션 결과를 통해 이산형 lookup_table 방식과 연속형 간략추론 방식의 각각의 제어기를 사용한 결과를 비교한다.

  • PDF

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • 제4권4호
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.

정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석 (Self-Organizing Fuzzy Polynomial Neural Networks by Means of IG-based Consecutive Optimization : Design and Analysis)

  • 박호성;오성권
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권6호
    • /
    • pp.264-273
    • /
    • 2006
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).