• 제목/요약/키워드: genetic disorders

검색결과 392건 처리시간 0.048초

Genetic testing in clinical pediatric practice

  • Yoo, Han Wook
    • Clinical and Experimental Pediatrics
    • /
    • 제53권3호
    • /
    • pp.273-285
    • /
    • 2010
  • Completion of the human genome project has allowed a deeper understanding of molecular pathophysiology and has provided invaluable genomic information for the diagnosis of genetic disorders. Advent of new technologies has lead to an explosion in genetic testing. However, this overwhelming stream of genetic information often misleads physicians and patients into a misguided faith in the power of genetic testing. Moreover, genetic testing raises a number of ethical, legal, and social issues. Diagnostic genetic tests can be divided into three primary but overlapping categories: cytogenetic studies (including routine karyotyping, high-resolution karyotyping, and fluorescent in situ hybridization studies), biochemical tests, and DNA-based diagnostic tests. DNA-based testing has grown rapidly over the past decade and includes preandpostnatal testing for the diagnosis of genetic diseases, testing for carriers of genetic diseases, genetic testing for susceptibility to common non-genetic diseases, and screening for common genetic diseases in a particular population. Theoretically, once a gene's structure, function, and association with a disease are well established, the clinical application of genetic testing should be feasible. However, for routine applications in a clinical setting, such tests must satisfy a number of criteria. These criteria include an acceptable degree of clinical and analytical validity, support of a quality assurance program, possibility of modifying the course of the diagnosed disease with treatment, inclusion of pre-and postnatal genetic counseling, and determination of whether the proposed test satisfies cost-benefit criteria and should replace or complement traditional tests. In the near future, the application of genetic testing to common diseases is expected to expand and will likely be extended to include individual pharmacogenetic assessments.

Mechanistic Target of Rapamycin Pathway in Epileptic Disorders

  • Kim, Jang Keun;Lee, Jeong Ho
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권3호
    • /
    • pp.272-287
    • /
    • 2019
  • The mechanistic target of rapamycin (mTOR) pathway coordinates the metabolic activity of eukaryotic cells through environmental signals, including nutrients, energy, growth factors, and oxygen. In the nervous system, the mTOR pathway regulates fundamental biological processes associated with neural development and neurodegeneration. Intriguingly, genes that constitute the mTOR pathway have been found to be germline and somatic mutation from patients with various epileptic disorders. Hyperactivation of the mTOR pathway due to said mutations has garnered increasing attention as culprits of these conditions : somatic mutations, in particular, in epileptic foci have recently been identified as a major genetic cause of intractable focal epilepsy, such as focal cortical dysplasia. Meanwhile, epilepsy models with aberrant activation of the mTOR pathway have helped elucidate the role of the mTOR pathway in epileptogenesis, and evidence from epilepsy models of human mutations recapitulating the features of epileptic patients has indicated that mTOR inhibitors may be of use in treating epilepsy associated with mutations in mTOR pathway genes. Here, we review recent advances in the molecular and genetic understanding of mTOR signaling in epileptic disorders. In particular, we focus on the development of and limitations to therapies targeting the mTOR pathway to treat epileptic seizures. We also discuss future perspectives on mTOR inhibition therapies and special diagnostic methods for intractable epilepsies caused by brain somatic mutations.

Protective Effects of Histidine Dipeptides on the Modification of Neurofilament-L by the Cytochrome c/Hydrogen Peroxide System

  • Kim, Nam-Hoon;Kang, Jung-Hoon
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.125-129
    • /
    • 2007
  • Neurofilament-L (NF-L) is a major element of the neuronal cytoskeleton and is essential for neuronal survival. Moreover, abnormalities in NF-L result in neurodegenerative disorders. Carnosine and the related endogeneous histidine dipeptides prevent protein modifications such as oxidation and glycation. In the present study, we investigated whether histidine dipeptides, carnosine, homocarnosine, or anserine protect NF-L against oxidative modification during reaction between cytochrome c and $H_2O_2$. Carnosine, homocarnosine and anserine all prevented cytochrome c/$H_2O_2$-mediated NF-L aggregation. In addition, these compounds also effectively inhibited the formation of dityrosine, and this inhibition was found to be associated with the reduced formations of oxidatively modified proteins. Our results suggest that carnosine and histidine dipeptides have antioxidant effects on brain proteins under pathophysiological conditions leading to degenerative damage, such as, those caused by neurodegenerative disorders.

가족 발생적인 갑상선이상의 방사성면역 측정법에 의한 TSH 평가 (An Evaluation by TSH Radioimmunoassay on Familial Thyroid Disorders)

  • 김지열
    • 대한핵의학회지
    • /
    • 제23권1호
    • /
    • pp.1-6
    • /
    • 1989
  • The occurrence of thyroid disorders is connected with iodine deficiency, defective synthesis or releasing of thyroid hormone and endemicity. Genetic factors are known as a single gene defects, interaction of multiple genes with environmental factors, as well as chromosomal aberrations. Diofnosis thyroid disorders is enforced by I-131 uptake test, thyroid scanning with I-131 or Tc-99 m and serum radioimmunoassays of T3, T4, free T4 and TSH. They were largely classified as hypothyroidism, hyperthyroidism, simple goiter and normal. The pedigree of 58 families was drawn by propositus, and then the correlation between thyroid disorders and TSH levels was analyzed. The results are as follows: 1) The offsprings and their mothers of 15 families were hypothyroidism, THS level was 5 folds for offsprings and 4 folds for mothers in comparison with control group. 2) 13 families were hyperthyyroidism in siblings but their mothers were normal in thyroid function, TSH level of the siblings was lower than control group. 3) Though the offsprings and their mothers of 10 families were similar to TSH level of control group, they are all simple goiter, familial thyroid disorders, in other thyroid function test. The familial thyroid disorders suggested that these transmitted from mothers to offsprings with X-linked dominant or autosomal dominant inheritance.

  • PDF

Tau mis-splicing in the pathogenesis of neurodegenerative disorders

  • Park, Sun Ah;Ahn, Sang Il;Gallo, Jean-Marc
    • BMB Reports
    • /
    • 제49권8호
    • /
    • pp.405-413
    • /
    • 2016
  • Tau proteins, which stabilize the structure and regulate the dynamics of microtubules, also play important roles in axonal transport and signal transduction. Tau proteins are missorted, aggregated, and found as tau inclusions under many pathological conditions associated with neurodegenerative disorders, which are collectively known as tauopathies. In the adult human brain, tau protein can be expressed in six isoforms due to alternative splicing. The aberrant splicing of tau pre-mRNA has been consistently identified in a variety of tauopathies but is not restricted to these types of disorders as it is also present in patients with non-tau proteinopathies and RNAopathies. Tau mis-splicing results in isoform-specific impairments in normal physiological function and enhanced recruitment of excessive tau isoforms into the pathological process. A variety of factors are involved in the complex set of mechanisms underlying tau mis-splicing, but variation in the cis-element, methylation of the MAPT gene, genetic polymorphisms, the quantity and activity of spliceosomal proteins, and the patency of other RNA-binding proteins, are related to aberrant splicing. Currently, there is a lack of appropriate therapeutic strategies aimed at correcting the tau mis-splicing process in patients with neurodegenerative disorders. Thus, a more comprehensive understanding of the relationship between tau mis-splicing and neurodegenerative disorders will aid in the development of efficient therapeutic strategies for patients with a tauopathy or other, related neurodegenerative disorders.

Identification and Characterization of Human Genes Targeted by Natural Selection

  • Ryu, Ha-Jung;Kim, Young-Joo;Park, Young-Kyu;Kim, Jae-Jung;Park, Mi-Young;Seo, Eul-Ju;Yoo, Han-Wook;Park, In-Sook;Oh, Berm-Seok;Lee, Jong-Keuk
    • Genomics & Informatics
    • /
    • 제6권4호
    • /
    • pp.173-180
    • /
    • 2008
  • The human genome has evolved as a consequence of evolutionary forces, such as natural selection. In this study, we investigated natural selection on the human genes by comparing the numbers of nonsynonymous (NS) and synonymous (S) mutations in individual genes. We initially collected all coding SNP data of all human genes from the public dbSNP. Among the human genes, we selected 3 different selection groups of genes: positively selected genes (NS/S${\geq}$3), negatively selected genes (NS/S${\leq}$1/3) and neutral selection genes (0.9

Update on genetic screening and treatment for infertile men with genetic disorders in the era of assisted reproductive technology

  • Lee, Seung Ryeol;Lee, Tae Ho;Song, Seung-Hun;Kim, Dong Suk;Choi, Kyung Hwa;Lee, Jae Ho;Kim, Dae Keun
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권4호
    • /
    • pp.283-294
    • /
    • 2021
  • A genetic etiology of male infertility is identified in fewer than 25% of infertile men, while 30% of infertile men lack a clear etiology, resulting in a diagnosis of idiopathic male infertility. Advances in reproductive genetics have provided insights into the mechanisms of male infertility, and a characterization of the genetic basis of male infertility may have broad implications for understanding the causes of infertility and determining the prognosis, optimal treatment, and management of couples. In a substantial proportion of patients with azoospermia, known genetic factors contribute to male infertility. Additionally, the number of identified genetic anomalies in other etiologies of male infertility is growing through advances in whole-genome amplification and next-generation sequencing. In this review, we present an up-to-date overview of the indications for appropriate genetic tests, summarize the characteristics of chromosomal and genetic diseases, and discuss the treatment of couples with genetic infertility by microdissection-testicular sperm extraction, personalized hormone therapy, and in vitro fertilization with pre-implantation genetic testing.

유전성 대사 질환의 분자 유전학적 진단 (Molecular Genetic Diagnosis of Inherited Metabolic Diseases)

  • 기창석;이수연;김종원
    • 대한유전성대사질환학회지
    • /
    • 제5권1호
    • /
    • pp.108-115
    • /
    • 2005
  • Inherited metabolic diseases (IMD) comprise a large class of genetic diseases involving disorders of metabolism. The majorities are due to defects of single genes that code for enzymes that facilitate conversion of various substances into others. Because of the multiplicity of conditions, many different diagnostic tests are used for screening of IMD. Molecular genetic diagnosis is the detection of pathogenic mutations in DNA and/or RNA samples and is becoming a much more common practice in medicine today. The purpose of molecular genetic testing in IMD includes diagnostic testing, pre-symptomatic testing, carrier screening, prenatal diagnosis, preimplantation testing, and population screening. However, because of the complexity, difficulty in interpreting the result, and the ethical considerations, an understanding of technical, conceptual, and practical aspects of molecular genetic diagnosis is mandatory.

  • PDF

Genetic Variation in Exon 3 of Human Apo B mRNA Editing Protein (apobec-1) Gene

  • Hong, Seung-Ho;Song, Jung-Han;Kim, Jin-Q
    • Journal of Genetic Medicine
    • /
    • 제3권1호
    • /
    • pp.15-19
    • /
    • 1999
  • We have investigated the genetic variation in the human apo B mRNA editing protein (apobec-1) gene. Exon 3 of the apobec-1 gene was amplified by polymerase chain reaction. After detection of an additional band by single strand conformational polymorphism (SSCP) analysis, sequencing of the SSCP-shift sample revealed a single-base mutation. The mutation was a CGG transversion at codon 80 resulting in a lleRMet substitution. This substitution was confirmed by restriction fragment length polymorphism analysis since a Pvull site is abolished by the substitution. Population and family studies confirmed that the inheritance of the genotypes for apobec-1 gene polymorphism is controlled by two codominant alleles (P1 and P2). A significant difference in plasma triglyceride was detected among the different apobec-1 genotypes in the CAD patients (P<0.05). Our study could provide the basis for elucidating the interaction between genetic variation of the apobec-1 gene and disorders related to lipid metabolism.

  • PDF