Records of 490,767 cows collected from 1990 to 2012 by dairy herd milk test of National Agriculture Cooperative Federation The pedigree of dairy cattle were provided by Korea Animal Improvement Association. The data were used to analyze the longevity of dairy cows with the life traits such as days in milk, number of lactation, productive life, and life span. The data were also used to investigate genetic relationship of these longevity traits with profitability of dairy cows, including heritability and genetic correlation. The profitability was calculated with simulation of milk income and production costs for individual cows. Days in milk among the traits had -0.287, -0.572 and -0.536 of genetic correlation with number of lactations, productive life and lifespan, respectively. The heritabilities of life span, number of lactations, productive life, and days in milk were found to be 0.045, 0.047, 0.059 and 0.081, respectively. Genetic correlations of profit with productive life, number of lactations, and days in milk were identified as 0.072, 0.080, 0.098 and 0.101. These results suggested that days in milk was most desirable traits to represent longevity of Holstein dairy cattle. In general, since longevity and profitability were close genetic relationship each other, genetic improvement of longevity is necessary for better profitable cows.
Choi, J.G.;Jeon, K.J.;Na, K.J.;Lee, C.W.;Kim, J.B.;Lee, C.
Asian-Australasian Journal of Animal Sciences
/
제16권9호
/
pp.1239-1241
/
2003
Korean cattle breeders have shown interest in genetic improvement of milking ability because poor milking ability and short suckling period of Korean cattle is a hindrance to growth of calves. In this study, daily milk yields by period in Korean cattle were analyzed with an animal model. The milk yields were actually measured at sequential intervals from 1 to 4 months after calving: daily milk yields from delivery to 1 month (DMY1), from 1 to 2 months (DMY2), from 2 to 3 months (DMY3), and from 3 to 4 months (DMY4). Genetic variance estimates gradually increased by the periods while environmental variance estimates gradually decreased. This resulted in a dramatic increase in the heritability by periods: 0.02 for DMY1, 0.11 for DMY2, 0.16 for DMY3, and 0.42 for DMY4. In multi-trait analyses with daily milk yield and body weight of calf, genetic correlation estimates between milk yield and body weight were quite small (-0.08 to 0.02 for birth weight and -0.10 to 0.00 for weaning weight). The trends of the heritability estimated in this study showed that the genetic effects were more influential when the milking period was longer, suggesting genetic evaluations with daily milk yield collected at a longer period.
Real time ultrasonic measurements for 13th rib fat thickness (LBF), longissimus muscle area (LEMA) and marbling score (LMS) of live animal at pre-harvest and subsequent carcass measurements for fat thickness (BF), longissimus muscle area (EMA), marbling score (MS) as well as body weight of live animal, carcass weight (CW), dressing percentage (DP), and total merit index (TMI) on 755 Korean beef steers were analyzed to estimate genetic parameters. Data were analyzed using multivariate animal models with an EM-REML algorithm. Models included fixed effects for year-season of birth, location of birth, test station, age of dam, linear and quadratic covariates for age or body weight at slaughter and random animal and residual effects. The heritability estimates for LEMA, LBF and LMS on RTU scans were 0.17, 0.41 and 0.55 in the age-adjusted model (Model 1) and 0.20, 0.52 and 0.55 in the weight-adjusted model (Model 2), respectively. The Heritability estimates for subsequent traits on carcass measures were 0.20, 0.38 and 0.54 in Model 1 and 0.23, 0.46 and 0.55 in Model 2, respectively. Genetic correlation estimate between LEMA and EMA was 0.81 and 0.79 in Model 1 and Model 2, respectively. Genetic correlation estimate between LBF and BF were high as 0.97 in Model 1 and 0.98 in Model 2. Real time ultrasonic marbling score were highly genetically correlated to carcass MS of 0.89 in Model 1 and 0.92 in Model 2. These results indicate that RTU scans would be alterative to carcass measurement for genetic evaluation of meat quality in a designed progeny-testing program in Korean beef cattle.
Biochemical characteristics of 24 Pongamia pinnata genotypes (candidate plus trees) from three agroclimatic zones were estimated and molecular characterization through RAPD markers was done. Various biochemical characters viz. seed oil, total carbohydrates, protein, acid value and Iodine number recorded significant variation among different genotypes. The highest seed oil content was 41.87% while seeds of 14 genotypes recorded above average (32.11%) for the trait. Seed oil and protein content exhibited a significant positive correlation and moderate heritability. Out of the initially selected twenty-five random primers, twenty-two RAPD primers were found to be highly reproducible and produced a total of 183 loci of which 147 (80.32%) loci were polymorphic. Percentage of polymorphism varied from 44% to 100% with an average of 80.62%. High level of genetic variation was found among different genotypes of P. pinnata. Both molecular and oil content (biochemical) markers appeared useful in analyzing the extent of genetic diversity in Pongamia and the result of these analyses will help to better understand the genetic diversity and relationship among populations. Overall, the Pongamia genotypes included in the study showed a correlation with their geographical origins such that genotypes from the same region tend to have higher genetic similarity as compared to those from different regions. However, in UPGMA based Nei's analysis, some genotypes were found not to be grouped based on geographical origins possibly due to the exchange of germplasm over time between farmers across the regions. The results from oil content analyses showed that several genotypes in 'Central and Western Plateau' agroclimatic zone of Jharkhand displayed a good potential for high oil content. The study provides insight about P. pinnata populations in Jharkhand (India) and constitutes a set of useful background information that can be used as a basis for future breeding strategy and improvement of the species.
Torres, Tatiana Saraiva;Sena, Luciano Silva;dos Santos, Gleyson Vieira;Filho, Luiz Antonio Silva Figueiredo;Barbosa, Bruna Lima;Junior, Antonio de Sousa;Britto, Fabio Barros;Sarmento, Jose Lindenberg Rocha
Animal Bioscience
/
제34권4호
/
pp.516-524
/
2021
Objective: The genetic evaluation of Santa Inês sheep was performed for resistance to gastrointestinal nematode infection (RGNI) and body size using different relationship matrices to assess the efficiency of including genomic information in the analyses. Methods: There were 1,637 animals in the pedigree and 500, 980, and 980 records of RGNI, thoracic depth (TD), and rump height (RH), respectively. The genomic data consisted of 42,748 SNPs and 388 samples genotyped with the OvineSNP50 BeadChip. The (co)variance components were estimated in single- and multi-trait analyses using the numerator relationship matrix (A) and the hybrid matrix H, which blends A with the genomic relationship matrix (G). The BLUP and single-step genomic BLUP methods were used. The accuracies of estimated breeding values and Spearman rank correlation were also used to assess the feasibility of incorporating genomic information in the analyses. Results: The heritability estimates ranged from 0.11±0.07, for TD (in single-trait analysis using the A matrix), to 0.38±0.08, for RH (using the H matrix in multi-trait analysis). The estimates of genetic correlation ranged from -0.65±0.31 to 0.59±0.19, using A, and from -0.42±0.30 to 0.57±0.16 using H. The gains in accuracy of estimated breeding values ranged from 2.22% to 75.00% with the inclusion of genomic information in the analyses. Conclusion: The inclusion of genomic information will benefit the direct selection for the traits in this study, especially RGNI and TD. More information is necessary to improve the understanding on the genetic relationship between resistance to nematode infection and body size in Santa Inês sheep. The genetic evaluation for the evaluated traits was more efficient when genomic information was included in the analyses.
To perform a systematic review of the data collected from case-control studies conducted earlier to investigate the correlation between E-selectin S128R polymorphism and ischemic stroke (IS) risk among the Chinese population. The PubMed, Web of Science, Chinese biomedical literature database (CBM), Chinese databases China National Knowledge Infrastructure (CNKI), WanfangData knowledge service platform (Wanfang Data), and information resource integration service platform (VIP) Databases were searched to retrieve case-control studies on the correlation between E-selectin gene S128R polymorphism and IS from the inception of the database till June 2019. The literature was screened, data were extracted, the risk of bias was reviewed, and the studies included were assessed independently by two reviewers. Stata ver. 12.0 software (Stata Corp LLC, College Station, TX, USA) was used to perform the meta-analysis. A total of 2907 cases from eight case-control studies involving 1478 IS patients and 1429 controls were included in this study. The R allele and RS genotype in E-selectin were found to be associated with the risk of IS as per the results of the meta-analysis (R vs. S : odds ratio [OR], 2.75; 95% confidence interval [CI], 2.15-3.51; p<0.00001; RS vs. SS : OR, 2.50; 95% CI, 1.95-3.19; p<0.00001; RR+RS vs. SS : OR, 2.85, 95% CI, 2.21-3.67; p<0.00001). The E-selectin gene S128R polymorphism is likely related to IS based on the results of a meta-analysis in the Chinese population, and the R allele and RS genotype of E-selectin may be IS risk factors.
본 연구는 산업계의 산란능력을 개량하는데 있어서 부분검정의 효율성을 구명하기 위하여 White Leghorn 합성종계통 선발 1세대의 478수에서 측정된 산란기록을 분석자료로 이용하였다. 조사된 형질은 초산일령, 40주령까지의 산란수(P) 및 산란율(P'). 41주령에서 64주령까지의 산란수(R) 및 산란율(R'), 그리고 전체산란수(A) 및 산란율(A') 이었으며, 초산일령부터 40주령까지의 단기검정성적을 다시 세분하여 초산일령에서 22주, 24주, ㆍㆍㆍㆍ, 40주까지 2주씩 더해 나간 기간동안의 산란수(E$_{t}$) 및 산란율(E'$_{t}$), 그 반대로 40주령까지의 성적을 최초의 초산일령 19주령 부터, 2주씩 제외시키고 얻은 나머지 기간의 산란수(S$_{t}$) 및 산란율(S'$_{t}$)을 각각 구하여 상대적 효율을 비교하였다.을 비교하였다.
Genetic diversity and soybean sprout-related traits were evaluated in a total of 72 soybean accessions (60 Glycine max, 7 Glycine soja, and 5 Glycine gracilis). 100-seed weight (SW) was greatly varied and ranged from 3.2g to 32.3g in 72 soybean accessions. Positive correlation was observed between GR and hypocotyl length (HL), whereas negative correlation was observed between SW and hypocotyl diameter (HD). Re-evaluation by discarding two soybean genotypes characterized with low GR indicated that much higher correlation of sprout yield (SY) with HD and SW. Based on the principal component analysis (PCA) for sprout-related traits, 57 accessions were classified. Soybean genotypes with better traits for sprout, such as small size of seeds and high SY, were characterized with high PCA 1 and PCA 2 values. The seed size in second is small but showed low GR and SY, whereas the third has large seed, high GR and more than 400% SY. In genetic similarity analysis using 60 SSR marker genotyping, 72 accessions were classified into three major and several minor groups. Nine of twelve accessions that were identified as the representatives of soybean for sprout based on PCA were in a group by the SSR marker analysis, indicating the SSR marker selection of parental genotypes for soybean sprout improvement program.
Joon-Ki Hong;Yong-Min Kim;Eun-Seok Cho;Jae-Bong Lee;Young-Sin Kim;Hee-Bok Park
Animal Bioscience
/
제37권4호
/
pp.622-630
/
2024
Objective: Pig breeders cannot obtain phenotypic information at the time of selection for sow lifetime productivity (SLP). They would benefit from obtaining genetic information of candidate sows. Genomic data interpreted using deep learning (DL) techniques could contribute to the genetic improvement of SLP to maximize farm profitability because DL models capture nonlinear genetic effects such as dominance and epistasis more efficiently than conventional genomic prediction methods based on linear models. This study aimed to investigate the usefulness of DL for the genomic prediction of two SLP-related traits; lifetime number of litters (LNL) and lifetime pig production (LPP). Methods: Two bivariate DL models, convolutional neural network (CNN) and local convolutional neural network (LCNN), were compared with conventional bivariate linear models (i.e., genomic best linear unbiased prediction, Bayesian ridge regression, Bayes A, and Bayes B). Phenotype and pedigree data were collected from 40,011 sows that had husbandry records. Among these, 3,652 pigs were genotyped using the PorcineSNP60K BeadChip. Results: The best predictive correlation for LNL was obtained with CNN (0.28), followed by LCNN (0.26) and conventional linear models (approximately 0.21). For LPP, the best predictive correlation was also obtained with CNN (0.29), followed by LCNN (0.27) and conventional linear models (approximately 0.25). A similar trend was observed with the mean squared error of prediction for the SLP traits. Conclusion: This study provides an example of a CNN that can outperform against the linear model-based genomic prediction approaches when the nonlinear interaction components are important because LNL and LPP exhibited strong epistatic interaction components. Additionally, our results suggest that applying bivariate DL models could also contribute to the prediction accuracy by utilizing the genetic correlation between LNL and LPP.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.