• Title/Summary/Keyword: genetic conservation

Search Result 492, Processing Time 0.027 seconds

High-density single nucleotide polymorphism chip-based conservation genetic analysis of indigenous pig breeds from Shandong Province, China

  • Wang, Yanping;Zhao, Xueyan;Wang, Cheng;Wang, Wenwen;Zhang, Qin;Wu, Ying;Wang, Jiying
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1123-1133
    • /
    • 2021
  • Objective: Shandong indigenous pig breeds are important Chinese pig resources. Their progressive population decline in recent decades has attracted attention towards their conservation. Conservation genetics of these indigenous breeds are essential for developing a conservation and utilization scheme. Methods: A high-density single nucleotide polymorphism (HD-SNP) chip-based comparative analysis of genetic characteristics was performed for seven Shandong indigenous pig breeds in the context of five Western commercial breeds. Results: The results showed that Shandong indigenous pig breeds varied greatly in genetic diversity, effective population size, inbreeding level, and genetic distance with the Western commercial breeds. Specifically, Laiwu and Dapulian displayed low genetic diversity, and had a genetically distant relationship with the Western commercial breeds (average F statistics [FST] value of 0.3226 and 0.2666, respectively). Contrastingly, the other five breeds (Yantai, Licha, Yimeng, Wulain, and Heigai) displayed high genetic diversity within breed and had some extent of mixture pattern with the Western commercial breeds, especially Duroc and Landrace (FST values from 0.1043 to 0.2536). Furthermore, intensive gene flow was discovered among the seven Shandong indigenous breeds, particularly Wulian, Licha, and Heigai, as indicated by the large cluster formed in the principal component analysis scatterplot and small population differentiation (average of 0.1253) among them. Conclusion: Our study advances the understanding of genetic characteristics of Shandong indigenous breeds and provides essential information for developing an appropriate conservation and utilization scheme for these breeds.

Strategy for Bio-Diversity and Genetic Conservation of Forest Resources in Korea (생물종(生物種) 다양성(多樣性) 및 삼림유전자원(森林遺傳資源) 보존(保存) 전략(戰略))

  • Park, Young Goo
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.191-204
    • /
    • 1994
  • Due to its topographic complexities and various climatical condition, Korea exhibits diverse forest types. Dominant tree species in this zone are Quercus spp., Betula spp., Zelkova spp., Fraxinus spp., Pinus densiflora, Pinus koraiensis, and Pinus thunbergii ete. Genetic conservation in forest species in Korea there are three ways ; one is in situ, other is ex situ and third is in-facility conservation. In situ conservation include that are the present status of conservation of rare and endangered flora and ecosystem, the reserved forest, the national and provincial park, and the gene pool of natural forests. Ex situ conservation means to be established the new forest from in situ forest stands, progeny and provenance test populations, seed orchard and clone banks, and gene conservation in-facility. As a tool for low temperature storage, several aspects on in vitro system were studied ; (1) establishment of in vitro cultures from juvenile and/or rejuvenated tissues, (2) induction of multiple shoots from the individual micropropagules, (3) elongation of the proliferated shoots. Studies on cold storage for short-and long-term maintenance of in vitro cultures under $4^{\circ}C$ in the refrigerator were conducted. For the cryopreservation at $-196^{\circ}C$, various factors affecting survivability of the plant materials are being examined. The necessity of gene conservation of forest trees is enlarged not only to increase the adaptability for various environments but also to gain the breeding materials in the future. For effective gene conservation of forest trees, I would like to suggest followings ; 1. Forest stands reserved for other than the gene conservation purposes such as national parks should be investigated by botanical and gene-ecological studies for selecting bio-diversity and gene conservation stands. 2. Reserved forest for gene pool should be extented both economically important tree spp. and non-economical species. 3. Reserved forest for progeny test and clone bank should be systematically investigated for the use of Ex situ forest gene conservation. 4. We have to find out a new methodology of genetic analysis determining the proper and effective size of subpopulation for in situ gene conservation. 5. We should develop a new tree breeding systems for successful gene conservation and utilization of the genetic resources. 6. New method of in-facility gene conservation using advanced genetic engineering should be developed to save time and economic resources. 7. For the conservation of species with short-life span of seed or shortage of knowledge of seed physiology, tissue culture techniques will be played a great role for gene conservation of those species. 8. It is are very useful conservation not only of genes but of genotypes which were selected already by breeding program. 9. Institutional and administrative arrangements including legistlation must be necessarily taken for gene conservation of forest trees. 10. It is national problems for conservation of forest resources which have been rapidly destroyed because of degenerating environmental condition and of inexperienced management system of bio-diversity and gene conservation. 11. In order to international cooperation for exchanging data of bio-diversity and gene conservation, we should connect to international net works as soon as possible.

  • PDF

Genetic Variation in Geographically Peripheral Populations of Bupleurum euphorbioides (Apiaceae) with Comparison to a Widespread Congener, B. longiradiatum

  • Kim, Hui;Chang, Chin-Sung
    • Animal cells and systems
    • /
    • v.9 no.1
    • /
    • pp.27-35
    • /
    • 2005
  • Bupleurum euphorbioides is isolated and restricted to high mountains in Korea northeastern China. Its conservation depends on whether it is threatened by inbreeding or a loss of genetic diversity. We compared the genetic variability in B. euphorbioides with B. longiradiatum, a widespread congener, to understand how they differ in their population genetic structure. Although B. euphorbioides showed a little lower genetic variability than B. longiradiatum, $F_{IS}$ statistics for most loci were strongly positive in both B. euphorbioides (0.445) and B. longiradiatum (0.553). In addition, B. euphorbioides showed higher mean $F_{ST}$ value than B. longiradiatum (0.297 vs 0.194). It might be due to the polycarpic nature of B. longiradiatum, which holds higher genetic potentials effectively in homogeneous environment than the monocarpic B. euphorbioides. The results suggested that B. euphorbioides is a genetically viable species, and that they are threatened primarily by environmental factor.

Development and characterization of nine microsatellite loci from the Korean hare (Lepus coreanus) and genetic diversity in South Korea

  • Kim, Sang-In;An, Jung-Hwa;Choi, Sung-Kyoung;Lee, Yun-Sun;Park, Han-Chan;Kimura, Junpei;Kim, Kyung-Seok;Min, Mi-Sook;Lee, Hang
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.230-236
    • /
    • 2012
  • The Korean hare, Lepus coreanus, is an important mammal in ecosystem food chains, and is distributed across the entire Korean peninsula and northeastern China. Polymorphic microsatellite loci were developed using the biotinenrichment technique for use in population genetics studies. Five trinucleotide and four dinucleotide microsatellite loci were selected and tested on 22 Korean hare specimens collected from Gangwon Province and Gyeongsangbuk Province in South Korea. The number of alleles across the two sampling regions ranged from three to nine with a mean of 6.1. Mean observed and expected heterozygosities and polymorphic information content were 0.540, 0.627 and 0.579, respectively. Only one locus, Lc06, showed departure from Hardy-Weinberg equilibrium after applying the Bonferroni correction. Four microsatellites, Lc01, Lc03, Lc12, and Lc19, satisfied the criteria to serve as a core set of markers recommended for population genetics studies. These new microsatellite markers will be widely applicable to future genetic studies for management and conservation of the Korean hare and related species, including assessment of the genetic diversity and population structure of L. coreanus.

Genetic diversity and geographic differentiation in the endangered Primula farinosa subsp. modesta, a subalpine endemic to Korea (한반도 아고산대 특산·희귀식물 설앵초의 유전적 다양성과 지리적 분화)

  • Chung, Jae-Min;Son, Sung-Won;Kim, Sang-Yong;Park, Gwang-Woo;Kim, Sung-Shik
    • Korean Journal of Plant Taxonomy
    • /
    • v.43 no.3
    • /
    • pp.236-243
    • /
    • 2013
  • Many plant species in subalpine regions are under threat of extinction as a result of climate change. In this study, the genetic diversity and geographic differentiation of three regions and six populations of Primula farinosa subsp. modesta (Bisset & Moore) Pax in Korea were assessed using the ISSR (Inter Simple Sequence Repeat) marker. The average genetic diversity (P = 60.62, SI = 0.299, h = 0.190) was relatively lower than that of other long-lived perennials, even though it is a self-incompatible species. AMOVA analysis showed that 50% of the total genetic diversity was partitioned among regions and Bayesian cluster analysis showed some remarkable geographic trends that were structured into 2 or 3 regions, suggesting limited gene flow among regions. Considering the population fragmentation, low level genetic diversity, and high genetic differentiation, it is essential to establish in situ and ex situ conservation strategies for P. farinosa subsp. modesta.

A unique genetic lineage at the southern coast of China in the agar-producing Gracilaria vermiculophylla (Gracilariales, Florideophyceae)

  • Hu, Zi-Min;Liu, Ruo-Yu;Zhang, Jie;Duan, De-Lin;Wang, Gao-Ge;Li, Wen-Hong
    • ALGAE
    • /
    • v.33 no.3
    • /
    • pp.269-278
    • /
    • 2018
  • Ocean warming can have significant negative impacts on population genetic diversity, local endemism and geographical distribution of a wide range of marine organisms. Thus, the identification of conservation units with high risk of extinction becomes an imperative task to assess, monitor, and manage marine biodiversity for policy-makers. Here, we surveyed population structure and genetic variation of the red seaweed Gracilaria vermiculophylla along the coast of China using genome-based amplified fragment length polymorphism (AFLP) scanning. Regardless of analysis methods used, AFLP consistently revealed a south to north genetic isolation. Populations at the southern coast of China showed unique genetic variation and much greater allelic richness, heterozygosity, and average genetic diversity than the northern. In particular, we identified a geographical barrier that may hinder genetic exchange between the two lineages. Consequently, the characterized genetic lineage at the southern coast of China likely resulted from the interplay of post-glacial persistence of ancestral diversity, geographical isolation and local adaptation. In particular, the southern populations are indispensable components to explore evolutionary genetics and historical biogeography of G. vermiculophylla in the northwestern Pacific, and the unique diversity also has important conservation value in terms of projected climate warming.

The genetic structure of taro: a comparison of RAPD and isozyme markers

  • Sharma, Kamal;Mishra, Ajay Kumar;Misra, Raj Shekhar
    • Plant Biotechnology Reports
    • /
    • v.2 no.3
    • /
    • pp.191-198
    • /
    • 2008
  • Germplasm characterization and evolutionary process in viable populations are important links between the conservation and utilization of plant genetic resources. Here, an investigation is made, based on molecular and biochemical techniques for assessing and exploiting the genetic variability in germplasm characterization of taro, which would be useful in plant breeding and ex situ conservation of taro plant genetic resources. Geographical differentiation and phylogenetic relationships of Indian taro, Colocasia esculenta (L.) Schott, were analyzed by random amplified polymorphic DNA (RAPD) and isozyme of seven enzyme systems with specific reference to the Muktakeshi accession, which has been to be proved resistant to taro leaf blight caused by P. colocasiae. The significant differentiations in Indian taro cultivars were clearly demonstrated by RAPD and isozyme analysis. RAPD markers showed higher values for genetic differentiation among taro cultivars and lower coefficient of variation than those obtained from isozymes. Genetic differentiation was evident in the taro accessions collected from different regions of India. It appears that when taro cultivation was introduced to a new area, only a small fraction of genetic variability in heterogeneous taro populations was transferred, possibly causing random differentiation among locally adapted taro populations. The selected primers will be useful for future genetic analysis and provide taro breeders with a genetic basis for selection of parents for crop improvement. Polymorphic markers identified in the DNA fingerprinting study will be useful for screening a segregating population, which is being generated in our laboratory aimed at developing a taro genetic linkage map.

Effect of Extended Egg Preservation Schedule in Conservation of Mutant Silkworm (Bombyx mori L.) Genetic Stocks in Gene Bank

  • Muthulakshmi M.;Mohan B.;Balachandran N.;Sinha R. K.;Thangavelu K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.11 no.2
    • /
    • pp.93-98
    • /
    • 2005
  • Studies on extended egg preservation schedule from 120 days to 180 days was taken up with 20 germplasm accessions of mutant silkworm genetic stocks of Bombyx mori L. Statistical analyses of the data collected over three trials revealed no significant changes both in the qualitative and quantitative traits of the genetic stocks between treatment (6 months egg preservation) and control (4 months egg preservation), except for fifth instar larval duration in TMS-61, TMS-62, TMS64, TMS-31 and TMS-34 shell weight in TMS-62, TMS-64 and TMS-66. Thus, the results indicate that extended schedule of 6 months egg preservation can safely be adopted, which will reduce the cost of conservation and minimize the genetic erosion owing to reduced crop cycle.

Conservation Biology of Endangered Plant Species in the National Parks of Korea with Special Reference to Iris dichotoma Pall. (Iridaceae)

  • So, Soonku;Myeong, Hyeon-Ho;Kim, Tae Geun;Oh, Jang-Geun;Kim, Ji-young;Choi, Dae-hoon;Yun, Ju-Ung;Kim, Byung-Bu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.32-32
    • /
    • 2019
  • The aim of this study was to provide basic guidelines for conservation and management of endangered plants in the national parks of Korea. Iris dichotoma Pall. (Iridaceae), which is a popular garden plant, is considered a second-class endangered species by Korean government and it is listed as a EN (Endangered) species in Red Data Book of Korea. We analyzed ecological conditions of I. dichotoma habitats based on vegetation properties and soil characteristics. This species which is known to inhabit in grassland adjacent to the ocean of lowlands slope and its population was located at an elevation of 8 m to 11 m. In the study sites, the mean of soil organic matter, total nitrogen and soil pH were 6.16%, 0.234% and 5.39 respectively. Additionally, the genetic variation and structure of three populations were assessed using ISSR (Inter Simple Sequence Repeat) markers. The genetic diversity of I. dichotoma (P = 59.46%, H = 0.206, S = 0.310) at the species level was relatively high. Analysis of molecular variance (AMOVA) showed 82.1% of the total genetic diversity was occurred in within populations and 17.9% variation among populations. Lastly, we developed predicted distribution model based on climate and topographic factors by applying SDMs (Species Distribution Models). Consequently, current status of I. dichotoma habitats is limited with natural factors such as the increase of the coverage rate of the herbs due to ecological succession. Therefore, it is essential to establish in situ and ex situ conservation strategies for protecting natural habitats and to require exploring potential and alternative habitats for reintroduction.

  • PDF

No Genetic Differentiation of Elaphe schrenckii Subspecies in Korea Based on 9 Microsatellite Loci

  • An, Jung-Hwa;Park, Dae-Sik;Lee, Jung-Hyun;Kim, Kyung-Seok;Lee, Hang;Min, Mi-Sook
    • Animal Systematics, Evolution and Diversity
    • /
    • v.26 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • The Russian ratsnake, Elaphe schrenckii, is found in Russia, China, and Korea, and is considered to be an endangered species by the Ministry of Environment in South Korea. Due to habitat loss and use in oriental medicine, their population has been severely decimated. In South Korea, two subspecies of E. schrenckii has been defined according to body color: E. s. schrenckii (blackish) and E. s. anomala (yellow-brownish). Molecular genetic studies on Elaphe schrenckii are very scarce and the taxonomy of Elaphe schrenckii subspecies is uncertain. From the present study, we attempted to identify the genetic differences of these two subspecies using species-specific microsatellites developed from the genomic library of E. schrenckii. Nine polymorphic loci were tested on 19 individuals from E. s. schrenckii (n=10) and E. s. anomala (n=9) in South Korea. The mean number of alleles was 3.78 in E. s. schrenckii and 4.11 in E. s. anomala. The average expected heterozygosity was 0.542 and 0.511 in E. s. schrenckii and E. s. anomala, respectively. We found a lack of genetic structure between two subspecies ($F_{ST}=0.016$) and no genetic discrimination between two subspecies was found. Based on the present findings by microsatellites, two subspecies can be considered as one species, E. schrenckii. However, further investigations on taxonomical status using mitochondrial and nuclear DNA sequences need to be performed and morphological & ecological data should be revised. The genetic markers should benefit future studies of the endangered species of other Elaphe species for the study of genetic diversity and potential conservation management.