• Title/Summary/Keyword: genetic association studies

Search Result 619, Processing Time 0.025 seconds

Replicated Association between SLC4A4 Gene and Blood Pressure Traits in the Korean Population

  • Jin, Hyun-Seok;Eom, Yong-Bin
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.377-383
    • /
    • 2012
  • Recent genome-wide association studies (GWAS) have identified a number of common variants associated with blood pressure homeostasis and hypertension in population. In the previous study, single nucleotide polymorphisms (SNPs) in the SLC4A4 gene have been reported to be associated with hypertension in Han Chinese population. We aimed to confirm whether the genetic variation of SLC4A4 gene influence the susceptibility to blood pressure and hypertension in Korean population. We genotyped variants in or near SLC4A4 in a population-based cohort including 7,551 unrelated Korean from Ansan and Ansung. Here, we performed association analysis to elucidate the possible relations of genetic polymorphisms in SLC4A4 gene with blood pressure traits. By examining genotype data of a total of 7,551 subjects in the Korean Association REsource (KARE) study, we discovered the SLC4A4 gene polymorphisms are associated with blood pressure and hypertension. The common and highest significant polymorphism was rs6846301 (${\beta}$=0.839, additive P=0.032) with systolic blood pressure (SBP), rs6846301 (${\beta}$=0.588, additive P=0.027) with diastolic blood pressure (DBP), and rs6846301 (OR=1.23, CI: 1.09~1.40, additive $P=1.2{\times}10^{-3}$) with hypertension. Furthermore, the SNP rs6846301 was consistently associated with both blood pressure and hypertension. Consequently, we found statistically significant SNPs in SLC4A4 gene that are associated with both blood pressure and hypertension traits. In addition, these results suggest that the individuals with the minor alleles of the SNP in the SLC4A4 gene may be more susceptible to the development of hypertension in the Korean population.

The Production Structure of Genetic Information in South Korea (한국의 유전적 정보 생산 구조)

  • Yi Cheong-Ho
    • Journal of Science and Technology Studies
    • /
    • v.5 no.1 s.9
    • /
    • pp.55-92
    • /
    • 2005
  • The factors contributing to the formation of an important scientific concept in South Korea and its circulation in the society are the scientific knowledge that had been already formed, matured, and established in the U.S.A, Europe and Japan and has been introduced into Korea, and the institutions that have been formed during the recent modernization in South Korea. The concept of 'genetic information' cannot be an exception in this context. The concept of genetic information is the one that has been extended and intensified by the genomics and bioinformatics formed and matured through the Human Genome Projects from the former concept of inheritance or heredity within the framework of classical and molecular genetics. The purpose of this study was to find out 'how the production structure of genetic information in South Korea has been formed', under the perspective of the conceptual, epistemic, and institutional holisticity or integratedness in the concept and knowledge production structure idealized in Western advanced nations. The discourse of genetic engineering popular in the mid 1980's in South Korea has catalyzed the development of molecular biology. However, the institutional balance that had been established for the biochemistry departments in Natural Science College and Medical College was not formed between the genetic engineering and genetics departments in South Korea. Therefore, they were unable to achieve the more integrative and macro-level disciplinary impact on life sciences, largely due to institutional lack of the capable (human) genetics departments in some leading Korean colleges of Medicine. In genomics, the cutting-edge reprogramming and restructuring of the traditional genetics in the West, South Korea has not invested, even meagerly, in the infrastructure, fund, and research and development (R & D) for the Basic or First Phase of the research trajectory in the Human Genome Project. Without a minimal Basic Phase, the genomics research and development in Korea has been running more or less for the Advanced or Second Phase. Bioinformatics has started developing in Korea under a narrow perspective which regards it as a mere sub-discipline of information technology (IT). Having developed itself in parallel with genomics, bioinformatics contains its own unique logics and contents that can be both directly and indirectly connected to the information science and technology. As a result, bioinformatics reveals a defect in respect of being synergistically integrated into genetics and life sciences in Korea. Owing to the structural problem in the production, genetic information appears to be produced in a fragmented pattern in the Korean society since its fundamental base is weak and thin. A good example of the conceptual and institutional fragmentedness is that 'the genetics of individual identification' is not a normal integrated part of the Korean genetics, but a scientific practice exercised in the departments of legal medicine in a few Medical Colleges. And the environment contributing to the production structure of genetic information in South Korea today comprises 'sangmyung gonghak'(or life engineering) discourse and non-governmental organization movement.

  • PDF

Association Analysis between Chromogranin B Genetic Variations and Smooth Pursuit Eye Movement Abnormality in Korean Patients with Schizophrenia (한국인 조현병 환자에서 Chromogranin B 유전자와 안구운동 이상의 연합에 대한 연구)

  • Park, Jin Wan;Pak, Doo Hyun;Hwang, Min Gyu;Lee, Min Ji;Shin, Hyoung Doo;Shin, Tae-Min;Hahn, Sang Woo;Hwang, Jaeuk;Lee, Yeon Jung;Woo, Sung-Il
    • Korean Journal of Biological Psychiatry
    • /
    • v.25 no.4
    • /
    • pp.101-109
    • /
    • 2018
  • Objectives According to previous studies, the Chromogranin B (CHGB) gene could be an important candidate gene for schizophrenia which is located on chromosome 20p12.3. Some studies have linked the polymorphism in CHGB gene with the risk of schizophrenia. Meanwhile, smooth pursuit eye movement (SPEM) abnormality has been regarded as one of the most consistent endophenotype of schizophrenia. In this study, we investigated the association between the polymorphisms in CHGB gene and SPEM abnormality in Korean patients with schizophrenia. Methods We measured SPEM function in 24 Korean patients with schizophrenia (16 male, 8 female) and they were divided according to SPEM function into two groups, good and poor SPEM function groups. We also investigated genotypes of polymorphisms in CHGB gene in each group. A logistic regression analysis was performed to find the association between SPEM abnormality and the number of polymorphism. Results The natural logarithm value of signal/noise ratio (Ln S/N ratio) of good SPEM function group was $4.19{\pm}0.19$ and that of poor SPEM function group was $3.17{\pm}0.65$. In total, 15 single nucleotide polymorphisms of CHGB were identified and the genotypes were divided into C/C, C/R, and R/R. Statistical analysis revealed that two genetic variants (rs16991480, rs76791154) were associated with SPEM abnormality in schizophrenia (p = 0.004). Conclusions Despite the limitations including a small number of samples and lack of functional study, our results suggest that genetic variants of CHGB may be associated with SPEM abnormality and provide useful preliminary information for further study.nwhile, smooth pursuit eye movement (SPEM) abnormality has been regarded as one of the most consistent endophenotype of schizophrenia. In this study, we investigated the association between the polymorphisms in CHGB gene and SPEM abnormality in Korean patients with schizophrenia. MethodsZZWe measured SPEM function in 24 Korean patients with schizophrenia (16 male, 8 female) and they were divided according to SPEM function into two groups, good and poor SPEM function groups. We also investigated genotypes of polymorphisms in CHGB gene in each group. A logistic regression analysis was performed to find the association between SPEM abnormality and the number of polymorphism. ResultsZZThe natural logarithm value of signal/noise ratio (Ln S/N ratio) of good SPEM function group was $4.19{\pm}0.19$ and that of poor SPEM function group was $3.17{\pm}0.65$. In total, 15 single nucleotide polymorphisms of CHGB were identified and the genotypes were divided into C/C, C/R, and R/R. Statistical analysis revealed that two genetic variants (rs16991480, rs76791154) were associated with SPEM abnormality in schizophrenia (p = 0.004). ConclusionsZZDespite the limitations including a small number of samples and lack of functional study, our results suggest that genetic variants of CHGB may be associated with SPEM abnormality and provide useful preliminary information for further study.

  • PDF

An Updated Pooled Analysis of Glutathione S-transferase Genotype Polymorphisms and Risk of Adult Gliomas

  • Yao, Lei;Ji, Guixiang;Gu, Aihua;Zhao, Peng;Liu, Ning
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.157-163
    • /
    • 2012
  • Objective: Glutathione S-transferases (GSTs) are multifunctional enzymes that play a crucial role in the detoxification of both the endogenous products of oxidative stress and exogenous carcinogens. Recent studies investigating the association between genetic polymorphisms in GSTs and the risk of adult brain tumors have reported conflicting results. The rationale of this pooled analysis was to determine whether the presence of a GST variant increases adult glioma susceptibility by combining data from multiple studies. Methods: In our meta-analysis, 12 studies were identified by a search of the MEDLINE, HIGHWIRE, SCIENCEDIRECT and EMBASE databases. Of those 12, 11 evaluated GSTM1, nine evaluated GSTT1 and seven evaluated GSTP1 Ile105Val. Between-study heterogeneity was assessed using ${\chi}^2$-based Q statistic and the $I^2$ statistic. Crude odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were used to estimate the association between GSTM1, GSTT1 and GSTP1 polymorphisms and the risk of adult gliomas. Results: The quantitative synthesis showed no significant evidence to indicate an association exists between the presence of a GSTM1, GSTT1 or GSTP1 Ile105Val haplotype polymorphism and the risk of adult gliomas (OR, 1.008, 1.246, 1.061 respectively; 95% CI, 0.901-1.129, 0.963-1.611, 0.653-1.724 respectively). Conclusions: Overall, this study did not suggest any strong relationship between GST variants or related enzyme polymorphisms and an increased risk of adult gliomas. Some caveats include absence of specific raw information on ethnic groups or smoking history on glioma cases in published articles; therefore, well-designed studies with a clear stratified analysis on potential confounding factors are needed to confirm these results.

Transforming Growth Factor Beta-1 C-509T Polymorphism and Cancer Risk: A Meta-analysis of 55 Case-control Studies

  • Liu, Yang;Lin, Xian-Fan;Lin, Chun-Jing;Jin, Si-Si;Wu, Jin-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4683-4688
    • /
    • 2012
  • Aim: To investigate the association of transforming growth factor-beta 1 (TGF-${\beta}1$) C-509T polymorphism and susceptibility to cancer by means of meta-analysis. Methods: An extensive search was performed to identify eligible case-control studies investigating such a link. The strength of the association between TGF-${\beta}1$ C-509T polymorphism and cancer risk was assessed by pooled odds ratios (ORs) and 95%confidence intervals (95%CIs) in fixed or random effects models. Results: 55 published case-control studies with a total number of 21,639 cases and 28,460 controls were included. Overall, there was no association between TGF-${\beta}1$ C-509T and cancer risk in all genetic comparison models (TT vs. CC: OR=1.01, 95%CI=0.89-1.15; T vs. C: OR=1.01, 95%CI=0.94-1.07). However, a stratified analysis by cancer type indicated -509 T allele was significantly associated with decreased risk of colorectal cancer (CRC) (TT vs. CT/CC: OR=0.85, 95%CI=0.76-0.95), especially for Caucasians (TT vs. CT/CC: OR=0.83, 95%CI=0.71-0.98) and for population-based studies (TT vs. CT/CC: OR=0.78, 95%CI=0.68-0.89). Conclusion: This meta-analysis suggested that TGF-${\beta}1$ C-509T polymorphism might contribute to a decreased risk on colorectal cancer susceptibility, especially for Caucasians.

Deciphering the Genetic Code in the RNA Tie Club: Observations on Multidisciplinary Research and a Common Research Agenda (RNA 타이 클럽의 유전암호 해독 연구: 다학제 협동연구와 공동의 연구의제에 관한 고찰)

  • Kim, Bong-kook
    • Journal of Science and Technology Studies
    • /
    • v.17 no.1
    • /
    • pp.71-115
    • /
    • 2017
  • In 1953, theoretical physicist George Gamow attempted to explain the process of protein synthesis by hypothesizing that the base sequence of DNA encodes a protein's amino acid sequence and, in response, proposed the nucleic acid-protein information transfer model, which he dubbed the "diamond code." After expressing interest in discussing the daring hypothesis, contemporary biologists, including James Watson, Francis Crick, Sydney Brenner, and Gunther Stent, were soon invited to join the RNA Tie Club, an informal research group that would also count biologists and various researchers in physics, mathematics, and computer engineering among its members. In examining the club's formation, growth, and decline in multidisciplinary research on deciphering the genetic code in the 1950s, this paper first investigates whether Gamow's idiosyncratic approach could be adopted as a collaborative research forum among contemporary biologists. Second, it explores how the RNA Tie Club's research agenda could have been expanded to other relevant research topics needing multidisciplinary approach? Third, it asks why and how the RNA Tie Club dissolved in the late 1950s. In answering those questions, this paper shows that analyses on the intersymbol correlation of the overlapping code functioned to integrate diverse approaches, including sequence decoding and statistical analysis, in research on the genetic code. As those analyses reveal, the peculiar approaches of the RNA Tie Club could be regarded as a useful method for biological research. The paper also concludes that the RNA Tie Club dissolved in the late 1950s due to the disappearance of the collaborative research agenda when the overlapping code hypothesis was abandoned.

Social Perception on Biotechnology in Korea (생명공학에 대한 사회적 인식)

  • Cho Sung-Kyum;Yoon Jeong-Ro
    • Journal of Science and Technology Studies
    • /
    • v.1 no.2 s.2
    • /
    • pp.343-369
    • /
    • 2001
  • Understanding of the social perception of biotechnology would facilitate the public awareness and debate over the social implications of biotechnology, leading to strengthened basis for social consensus. As a part of the ELSI (Ehical, Legal and Social Implications) project in Korea, the authors have launched a series of social surveys on the social perception of biotechnology. This article is based on the analysis of the first survey, conducted in October 2001. The data were collected through telephone survey on 500 adult respondents nationwide selected by a stratified sampling method. The survey addresses the following questions: What is the present state of public awareness and attitude toward a variety of medical and social applications of biotechnology, such as genetic testing, prenatal genetic screening and testing, xenotransplant, genetic screening for employment, central collection and management of genetic information, and GM food? What factors are related with this perception? The analysis shows that a majority of respondents are in favor of the medical applications. Concerning the social applications and GM food, however, the respondents express a high level of negative attitude a with significant portion of 'do not know' responses. The public perception of the biotechnology is not crystallized in coherent manner yet. The public perception is strongly influenced by mass media, which tend to deliver rather positive information on biotechnology. The analysis suggests that the production and dissemination of diverse information should be activated to reach a sound decision on controversial issues surrounding the development of biotechnology both at individual and societal level as well.

  • PDF

Screening for candidate genes related with histological microstructure, meat quality and carcass characteristic in pig based on RNA-seq data

  • Ropka-Molik, Katarzyna;Bereta, Anna;Zukowski, Kacper;Tyra, Miroslaw;Piorkowska, Katarzyna;Zak, Grzegorz;Oczkowicz, Maria
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1565-1574
    • /
    • 2018
  • Objective: The aim of the present study was to identify genetic variants based on RNA-seq data, obtained via transcriptome sequencing of muscle tissue of pigs differing in muscle histological structure, and to verify the variants' effect on histological microstructure and production traits in a larger pig population. Methods: RNA-seq data was used to identify the panel of single nucleotide polymorphisms (SNPs) significantly related with percentage and diameter of each fiber type (I, IIA, IIB). Detected polymorphisms were mapped to quantitative trait loci (QTLs) regions. Next, the association study was performed on 944 animals representing five breeds (Landrace, Large White, Pietrain, Duroc, and native Puławska breed) in order to evaluate the relationship of selected SNPs and histological characteristics, meat quality and carcasses traits. Results: Mapping of detected genetic variants to QTL regions showed that chromosome 14 was the most overrepresented with the identification of four QTLs related to percentage of fiber types I and IIA. The association study performed on a 293 longissimus muscle samples confirmed a significant positive effect of transforming acidic coiled-coil-containing protein 2 (TACC2) polymorphisms on fiber diameter, while SNP within forkhead box O1 (FOXO1) locus was associated with decrease of diameter of fiber types IIA and IIB. Moreover, subsequent general linear model analysis showed significant relationship of FOXO1, delta 4-desaturase, sphingolipid 1 (DEGS1), and troponin T2 (TNNT2) genes with loin 'eye' area, FOXO1 with loin weight, as well as FOXO1 and TACC2 with lean meat percentage. Furthermore, the intramuscular fat content was positively associated (p<0.01) with occurrence of polymorphisms within DEGS1, TNNT2 genes and negatively with occurrence of TACC2 polymorphism. Conclusion: This study's results indicate that the SNP calling analysis based on RNA-seq data can be used to search candidate genes and establish the genetic basis of phenotypic traits. The presented results can be used for future studies evaluating the use of selected SNPs as genetic markers related to muscle histological profile and production traits in pig breeding.

MACROD2 Polymorphisms Are Associated with Hypertension in Korean Population (한국인에서의 MACROD2 유전자 다형성과 고혈압 상관성 연구)

  • Ko, Bokyung;Jin, Hyun-Seok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.1
    • /
    • pp.57-63
    • /
    • 2019
  • Hypertension is caused by a combination of genetic and environmental factors. In advanced countries, more than 30% of adults have hypertension. Among the genetic factors affecting hypertension, there are reports from European cohort studies that variants of the MACROD2 gene are correlated with blood pressure and the hypertension status. In this study, genetic polymorphisms of the MACROD2 gene region were selected and extracted based on Korean Genome and Epidemiology data, and logistic regression analysis was then performed for the hypertensive state. Linear regression analysis was also performed for the systolic and diastolic blood pressure. As a result, 16 SNPs showed a statistically significant association with a hypertensive state, and 2 SNPs (rs16996211, rs6034240) showed statistical significance, even in blood pressure. The most significant rs16996211 had a relative risk of hypertension of 0.85 (CI: 0.76~0.95, $P=3.1{\times}10^{-3}$), as well as an association with the systolic blood pressure (beta=-0.75, P=0.024) and diastolic blood pressure (beta=-0.59, P=0.01). These results suggest that polymorphisms of the MACROD2 gene are associated with hypertension in both Caucasians and Koreans, and highlight the potential genetic correlations with the pathogenesis of hypertension.

Association between SMAD2 Gene and Serum Liver Enzyme Levels in the Korean Population

  • Ahn, Hyo-Jun;Sull, Jae Woong;Eom, Yong-Bin
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.124-131
    • /
    • 2013
  • Genome-wide association studies (GWAS) have identified a number of common variants associated with serum liver enzyme homeostasis in population. In the previous study, single nucleotide polymorphisms (SNPs) in several genes have been reported to be associated with serum liver enzyme levels in European population. We aimed to confirm whether the genetic variation of SMAD2 (SMAD family member 2) gene influence the serum liver enzyme levels in Korean population. We genotyped variants in or near SMAD2 in a population-based sample including 994 unrelated Korean adult. Here, we performed association analysis to elucidate the possible relations of genetic polymorphisms in SMAD2 gene with serum liver enzyme levels. By examining genotype data of a total of 944 subjects in 5 hospital health promotion center, we discovered the SMAD2 gene polymorphisms are associated with serum liver enzyme levels. The common and highest significant polymorphism was rs17736760 (${\beta}$=3.51, P=5.31E-07) with glutamic oxaloacetic transferase (GOT), rs17736760 (${\beta}$=5.99, P=1.25E-05) with glutamic pyruvate transaminase (GPT), and rs17736760 (${\beta}$=15.68, P=9.93E-07) with gamma glutamyl transferase (GGT) in all group. Furthermore, the SNP rs17736760 was consistently associated with GOT (${\beta}$=5.25, P=1.72E-06), GPT (${\beta}$=9.97, P=1.16E-05), GGT (${\beta}$=26.13, P=3.43E-06) in men group. Consequently, we found statistically significant SNP in SMAD2 gene that are associated with serum levels of GOT, GPT, and GGT. In addition, these results suggest that the individuals with the minor alleles of the SNP in the SMAD2 gene may be more elevated serum liver enzyme levels in the Korean population.