• Title/Summary/Keyword: genetic algorithms

Search Result 1,579, Processing Time 0.03 seconds

A Design Of Control System Satisfying Multi-Performance Specifications Using Adaptive Genetic Algorithms (적응 유전자 알고리즘을 이용한 다수의 성능 사양을 만족하는 제어계의 설계)

  • 윤영진;원태현;이영진;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.621-624
    • /
    • 2002
  • The purpose of this paper is a study on getting proper gain set of PID controller which satisfies multi-performance specifications of the control system. The multi-objective optimization method is introduced to evaluate specifications, and the genetic algorithm is used as an optimal problem solver. To enhance the performance of genetic algorithm itself, adaptive technique is included. According to the proposed method in this paper, finding suitable gain set can be more easily accomplishable than manual gain seeking and tuning.

  • PDF

혼합 유전알고리즘을 이용한 비선형 최적화문제의 효율적 해법

  • 윤영수;이상용
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.1 no.1
    • /
    • pp.63-85
    • /
    • 1996
  • This paper describes the applications of genetic algorithm to nonlinear constrained optimization problems. Genetic algorithms are combinatorial in nature, and therefore are computationally suitable for treating continuous and idstrete integer design variables. For several problems , the conventional genetic algorithms are ill-defined , which comes from the application of penalty function , encoding and decoding methods, fitness scaling, and premature convergence of solution. Thus, we develope a hybrid genetic algorithm to resolve these problems and present two examples to demonstrate the effectiveness of the methodology developed in this paper.

  • PDF

Tuning Rules of the PID Controller Based on Genetic Algorithms (유전알고리즘에 기초한 PID 제어기의 동조규칙)

  • Kim, Do-Eung;Jin, Gang-Gyoo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2167-2170
    • /
    • 2002
  • In this paper, model-based tuning rules of the PID controller are proposed incorporating with genetic algorithms. Three sets of optimal PID parameters for set-point tracking are obtained based on the first-order time delay model and a genetic algorithm as a optimization tool which minimizes performance indices(IAE, ISE and ITAE). Then tuning rules are derived using the tuned parameter sets, potential rule models and a genetic algorithm. Simulation is carried out to verify the effectiveness of the proposed rules.

  • PDF

Genetic Algorithms for Optimal Augmentation of Water Distribution Networks (유전자 알고리즘을 이용한 배수관망의 최적 확장 설계)

  • Lee, Seung-Cheol;Lee, Sang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.567-575
    • /
    • 2001
  • A methodology is developed for designing the minimum-cost water distribution network. The method is based on network simulations and an optimization scheme using genetic algorithms. Being a stochastic optimization scheme, genetic algorithms have advantages over the conventional search algorithms in solving network problems known for their nonlinearities and herculean computational costs. While existing methods focus on the design of either entirely new or parallel augmentation of network systems, the proposed method can be applied to problems having both new branches of tree-type and paralle augmentation in loops. The applicability of the method was shown through a case study for Baekryeon water supply system. The optimized design resulted in the maximum 5.37% savings compared to the conventional design without optimization, while meeting the hydraulic constraints.

  • PDF

Estimation of Optimal Control Parameters and Design of Hybrid Fuzzy Controller by Means of Genetic Algorithms (유전자 알고리즘에 의한 HFC의 최적 제어파라미터 추정 및 설계)

  • Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan;Kim, Yong-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.11
    • /
    • pp.599-609
    • /
    • 2000
  • The new design methodology of a hybrid fuzzy controller by means of the genetic algorithms is presented. First, a hybrid fuzzy controller(HFC) related to the optimal estimation of control parameters is proposed. The control input for the system in the HFC combined PID controller with fuzzy controller is a convex combination of the FLC's output and PID's output by a fuzzy variable, namely, membership function of weighting coefficient. Second, an auto-tuning algorithms utilizing the simplified reasoning method and genetic algorithms is presented to automatically improve the performance of hybrid fuzzy controller. Especially, in order to auto-tune scaling factors and PID parameters of HFC using GA, three kinds of estimation modes such as basic, contraction, and expansion mode are effectively utilized. The proposed HFC is evaluated and discussed to show applicability and superiority with the and of three representative processes.

  • PDF

Optimal Economic Load Dispatch using Parallel Genetic Algorithms in Large Scale Power Systems (병렬유전알고리즘을 응용한 대규모 전력계통의 최적 부하배분)

  • Kim, Tae-Kyun;Kim, Kyu-Ho;Yu, Seok-Ku
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.388-394
    • /
    • 1999
  • This paper is concerned with an application of Parallel Genetic Algorithms(PGA) to optimal econmic load dispatch(ELD) in power systems. The ELD problem is to minimize the total generation fuel cost of power outputs for all generating units while satisfying load balancing constraints. Genetic Algorithms(GA) is a good candidate for effective parallelization because of their inherent principle of evolving in parallel a population of individuals. Each individual of a population evaluates the fitness function without data exchanges between individuals. In application of the parallel processing to GA, it is possible to use Single Instruction stream, Multiple Data stream(SIMD), a kind of parallel system. The architecture of SIMD system need not data communications between processors assigned. The proposed ELD problem with C code is implemented by SIMSCRIPT language for parallel processing which is a powerfrul, free-from and versatile computer simulation programming language. The proposed algorithms has been tested for 38 units system and has been compared with Sequential Quadratic programming(SQP).

  • PDF

Real-Time Multiple-Parameter Tuning of PPF Controllers for Smart Structures by Genetic Algorithms (유전자 알고리듬을 이용한 지능구조물의 PPF 제어기 실시간 다중변수 조정)

  • Heo, Seok;Kwak, Moon-Kyu
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.147-155
    • /
    • 2001
  • This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smart structures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control Parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.

  • PDF

Incorporating Genetic Algorithms into the Generation of Artificial Accelerations (인공 지진파 작성을 위한 유전자 알고리즘의 적용)

  • Park, Hyung-Ghee;Chung, Hyun-Kyo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.1-9
    • /
    • 2007
  • The method of generating the artificial acceleration time histories for seismic analysis based on genetic algorithms is presented. For applying to the genetic algorithms, the frequencies are selected as the decision variables eventually to be genes. An arithmetic average crossover operator and an arithmetic ratio mutation operator are suggested in this study. These operators as well as the typical simple crossover operator are utilized in generating the artificial acceleration time histories corresponding to the specified design response spectrum. Also these generated artificial time histories are checked whether their outward features are to be coincident with the recorded earthquake motion or not. The features include envelope shape, correlation condition between 2 horizontal components of motion, and the relationship of max. acceleration, max. velocity and max. displacement of ground.

Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Genetic Algorithm using UNDX operator (UNDX연산자를 이용한 계층적 공정 경쟁 유전자 알고리즘을 이용한 퍼지집합 퍼지 모델의 최적화)

  • Kim, Gil-Sung;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.204-206
    • /
    • 2007
  • In this study, we introduce the optimization method of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation, The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods. Particularly, in parameter identification, we use the UNDX operator which uses multiple parents and generate offsprings around the geographic center off mass of these parents.

  • PDF

Genetically Optimized Fuzzy Polynomial Neural Network and Its Application to Multi-variable Software Process

  • Lee In-Tae;Oh Sung-Kwun;Kim Hyun-Ki;Pedrycz Witold
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially Genetic Algorithms(GAs). The conventional FPNN developed so far are based on mechanisms of self-organization and evolutionary optimization. The design of the network exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being provided by the designer and kept fixed throughout the overall development process. This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. It is shown that the proposed advanced genetic algorithms based Fuzzy Polynomial Neural Networks is more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS) dataset to evaluate the performance of the proposed model.