• Title/Summary/Keyword: genetic algorithms

Search Result 1,601, Processing Time 0.032 seconds

Next-generation Sequencing for Environmental Biology - Full-fledged Environmental Genomics around the Corner (차세대 유전체 기술과 환경생물학 - 환경유전체학 시대를 맞이하여)

  • Song, Ju Yeon;Kim, Byung Kwon;Kwon, Soon-Kyeong;Kwak, Min-Jung;Kim, Jihyun F.
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.2
    • /
    • pp.77-89
    • /
    • 2012
  • With the advent of the genomics era powered by DNA sequencing technologies, life science is being transformed significantly and biological research and development have been accelerated. Environmental biology concerns the relationships among living organisms and their natural environment, which constitute the global biogeochemical cycle. As sustainability of the ecosystems depends on biodiversity, examining the structure and dynamics of the biotic constituents and fully grasping their genetic and metabolic capabilities are pivotal. The high-speed high-throughput next-generation sequencing can be applied to barcoding organisms either thriving or endangered and to decoding the whole genome information. Furthermore, diversity and the full gene complement of a microbial community can be elucidated and monitored through metagenomic approaches. With regard to human welfare, microbiomes of various human habitats such as gut, skin, mouth, stomach, and vagina, have been and are being scrutinized. To keep pace with the rapid increase of the sequencing capacity, various bioinformatic algorithms and software tools that even utilize supercomputers and cloud computing are being developed for processing and storage of massive data sets. Environmental genomics will be the major force in understanding the structure and function of ecosystems in nature as well as preserving, remediating, and bioprospecting them.

Queue Detection using Fuzzy-Based Neural Network Model (퍼지기반 신경망모형을 이용한 대기행렬 검지)

  • KIM, Daehyon
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2003
  • Real-time information on vehicle queue at intersections is essential for optimal traffic signal control, which is substantial part of Intelligent Transport Systems (ITS). Computer vision is also potentially an important element in the foundation of integrated traffic surveillance and control systems. The objective of this research is to propose a method for detecting an exact queue lengths at signalized intersections using image processing techniques and a neural network model Fuzzy ARTMAP, which is a supervised and self-organizing system and claimed to be more powerful than many expert systems, genetic algorithms. and other neural network models like Backpropagation, is used for recognizing different patterns that come from complicated real scenes of a car park. The experiments have been done with the traffic scene images at intersections and the results show that the method proposed in the paper could be efficient for the noise, shadow, partial occlusion and perspective problems which are inevitable in the real world images.

A Novel Network Anomaly Detection Method based on Data Balancing and Recursive Feature Addition

  • Liu, Xinqian;Ren, Jiadong;He, Haitao;Wang, Qian;Sun, Shengting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3093-3115
    • /
    • 2020
  • Network anomaly detection system plays an essential role in detecting network anomaly and ensuring network security. Anomaly detection system based machine learning has become an increasingly popular solution. However, due to the unbalance and high-dimension characteristics of network traffic, the existing methods unable to achieve the excellent performance of high accuracy and low false alarm rate. To address this problem, a new network anomaly detection method based on data balancing and recursive feature addition is proposed. Firstly, data balancing algorithm based on improved KNN outlier detection is designed to select part respective data on each category. Combination optimization about parameters of improved KNN outlier detection is implemented by genetic algorithm. Next, recursive feature addition algorithm based on correlation analysis is proposed to select effective features, in which a cross contingency test is utilized to analyze correlation and obtain a features subset with a strong correlation. Then, random forests model is as the classification model to detection anomaly. Finally, the proposed algorithm is evaluated on benchmark datasets KDD Cup 1999 and UNSW_NB15. The result illustrates the proposed strategies enhance accuracy and recall, and decrease the false alarm rate. Compared with other algorithms, this algorithm still achieves significant effects, especially recall in the small category.

Improvement of Control Performance of Array-Sensor System Using Soft Computing (Soft Computing을 이용한 배열 센서 시스템의 제어 성능 개선)

  • Na, Seung-You;Ahn, Myung-Kook
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.79-87
    • /
    • 2003
  • In this paper, we propose a method to obtain a linear characteristic using soft computing for systems which have array sensors of nonlinear characteristics. Also a procedure utilizing the pattern information of array sensors without additional sensors is proposed to reduce disturbance effects. For a typical example, even a single CdS cell for CdS array has nonlinear characteristics. Overall linear characteristic for CdS array is obtained using fuzzy logic for each cell and overlapped portion. In addition, further improvement for linearization is obtained applying genetic algorithms for the parameters of membership functions. Also the effect of disturbing external light changes to the CdS array can be reduced without using any additional sensors for calibration. The proposed method based on fuzzy logic shows improvements for position measurements and disturbance reduction to external light changes due to the fuzziness of the shadow boundary as well as the inherent nonlinearity of the CdS array. This improvement is shown by applying the proposed method to the ball position measurements of a magnetic levitation system.

Conflicts in Overlay Environments: Inefficient Equilibrium and Incentive Mechanism

  • Liao, Jianxin;Gong, Jun;Jiang, Shan;Li, Tonghong;Wang, Jingyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2286-2309
    • /
    • 2016
  • Overlay networks have been widely deployed upon the Internet by Service Providers (SPs) to provide improved network services. However, the interaction between each overlay and traffic engineering (TE) as well as the interaction among co-existing overlays may occur. In this paper, we adopt both non-cooperative and cooperative game theory to analyze these interactions, which are collectively called hybrid interaction. Firstly, we model a situation of the hybrid interaction as an n+1-player non-cooperative game, in which overlays and TE are of equal status, and prove the existence of Nash equilibrium (NE) for this game. Secondly, we model another situation of the hybrid interaction as a 1-leader-n-follower Stackelberg-Nash game, in which TE is the leader and co-existing overlays are followers, and prove that the cost at Stackelberg-Nash equilibrium (SNE) is at least as good as that at NE for TE. Thirdly, we propose a cooperative coalition mechanism based on Shapley value to overcome the inherent inefficiency of NE and SNE, in which players can improve their performance and form stable coalitions. Finally, we apply distinct genetic algorithms (GA) to calculate the values for NE, SNE and the assigned cost for each player in each coalition, respectively. Analytical results are confirmed by the simulation on complex network topologies.

Relationship among Degree of Time-delay, Input Variables, and Model Predictability in the Development Process of Non-linear Ecological Model in a River Ecosystem (비선형 시계열 하천생태모형 개발과정 중 시간지연단계와 입력변수, 모형 예측성 간 관계평가)

  • Jeong, Kwang-Seuk;Kim, Dong-Kyun;Yoon, Ju-Duk;La, Geung-Hwan;Kim, Hyun-Woo;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.161-167
    • /
    • 2010
  • In this study, we implemented an experimental approach of ecological model development in order to emphasize the importance of input variable selection with respect to time-delayed arrangement between input and output variables. Time-series modeling requires relevant input variable selection for the prediction of a specific output variable (e.g. density of a species). Inadequate variable utility for input often causes increase of model construction time and low efficiency of developed model when applied to real world representation. Therefore, for future prediction, researchers have to decide number of time-delay (e.g. months, weeks or days; t-n) to predict a certain phenomenon at current time t. We prepared a total of 3,900 equation models produced by Time-Series Optimized Genetic Programming (TSOGP) algorithm, for the prediction of monthly averaged density of a potamic phytoplankton species Stephanodiscus hantzschii, considering future prediction from 0- (no future prediction) to 12-months ahead (interval by 1 month; 300 equations per each month-delay). From the investigation of model structure, input variable selectivity was obviously affected by the time-delay arrangement, and the model predictability was related with the type of input variables. From the results, we can conclude that, although Machine Learning (ML) algorithms which have popularly been used in Ecological Informatics (EI) provide high performance in future prediction of ecological entities, the efficiency of models would be lowered unless relevant input variables are selectively used.

On Design Intelligent Control System by Fussionf of Fuzzy Logic and Genetic Algorithms (퍼지논리와 유전자 알고리즘 융합에 의한 지능형 제어 시스템)

  • Lee, Mal-Rye;Kim, Tae-Eun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.952-958
    • /
    • 1999
  • This paper presented the application of GAs as a means of finding optimal solutions over a parameter space in the controller design for a fuzzy control system. The performance can involve a weighted combination of various performance characteristics such as rise-time, settling-time, settling-time, overshoot. The results obtained here are compared with those for a traditional design obtained using the root-locus method. In contrast to traditional methods, the GA-based method does not require the usual mathematical processess or mathematical model of the system. In this paper, the Ga-based Fuzzy control system combining Fuzzy control theory with the GA, that is known to be very effective in the optimization problem, will be proposed The effectiveness of the proposed control system will be demonstrated by computer simulations using task tracking position system in stable and unstable linear systems. It is shown that the GA-based controller is better than the traditional controller used It stable and unstable linear systems.

  • PDF

Learning of Rules for Edge Detection of Image using Fuzzy Classifier System (퍼지 분류가 시스템을 이용한 영상의 에지 검출 규칙 학습)

  • 정치선;반창봉;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.252-259
    • /
    • 2000
  • In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection of a image. The FCS is based on the fuzzy logic system combined with machine learning. Therefore the antecedent and consequent of a classifier in FCS are the same as those of a fuzzy rule. There are two different approaches, Michigan and Pittsburgh approaches, to acquire appropriate fuzzy rules by evolutionary computation. In this paper, we use the Michigan style in which a single fuzzy if-then rule is coded as an individual. Also the FCS employs the Genetic Algorithms to generate new rules and modify rules when performance of the system needs to be improved. The proposed method is evaluated by applying it to the edge detection of a gray-level image that is a pre-processing step of the computer vision. the differences of average gray-level of the each vertical/horizontal arrays of neighborhood pixels are represented into fuzzy sets, and then the center pixel is decided whether it is edge pixel or not using fuzzy if-then rules. We compare the resulting image with a conventional edge image obtained by the other edge detection method such as Sobel edge detection.

  • PDF

Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors

  • Chahnasir, E. Sadeghipour;Zandi, Y.;Shariati, M.;Dehghani, E.;Toghroli, A.;Mohamad, E. Tonnizam;Shariati, A.;Safa, M.;Wakil, K.;Khorami, M.
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.413-424
    • /
    • 2018
  • The factors affecting the shear strength of the angle shear connectors in the steel-concrete composite beams can play an important role to estimate the efficacy of a composite beam. Therefore, the current study has aimed to verify the output of shear capacity of angle shear connector according to the input provided by Support Vector Machine (SVM) coupled with Firefly Algorithm (FFA). SVM parameters have been optimized through the use of FFA, while genetic programming (GP) and artificial neural networks (ANN) have been applied to estimate and predict the SVM-FFA models' results. Following these results, GP and ANN have been applied to develop the prediction accuracy and generalization capability of SVM-FFA. Therefore, SVM-FFA could be performed as a novel model with predictive strategy in the shear capacity estimation of angle shear connectors. According to the results, the Firefly algorithm has produced a generalized performance and be learnt faster than the conventional learning algorithms.

Learning of Fuzzy Rules Using Fuzzy Classifier System (퍼지 분류자 시스템을 이용한 퍼지 규칙의 학습)

  • Jeong, Chi-Seon;Sim, Gwi-Bo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.5
    • /
    • pp.1-10
    • /
    • 2000
  • In this paper, we propose a Fuzzy Classifier System(FCS) makes the classifier system be able to carry out the mapping from continuous inputs to outputs. The FCS is based on the fuzzy controller system combined with machine learning. Therefore the antecedent and consequent of a classifier in FCS are the same as those of a fuzzy rule. In this paper, the FCS modifies input message to fuzzified message and stores those in the message list. The FCS constructs rule-base through matching between messages of message list and classifiers of fuzzy classifier list. The FCS verifies the effectiveness of classifiers using Bucket Brigade algorithm. Also the FCS employs the Genetic Algorithms to generate new rules and modify rules when performance of the system needs to be improved. Then the FCS finds the set of the effective rules. We will verify the effectiveness of the poposed FCS by applying it to Autonomous Mobile Robot avoiding the obstacle and reaching the goal.

  • PDF