• Title/Summary/Keyword: genetic algorithm,

Search Result 4,788, Processing Time 0.03 seconds

Multimodal Optimization Based on Global and Local Mutation Operators

  • Jo, Yong-Gun;Lee, Hong-Gi;Sim, Kwee-Bo;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1283-1286
    • /
    • 2005
  • Multimodal optimization is one of the most interesting topics in evolutionary computational discipline. Simple genetic algorithm, a basic and good-performance genetic algorithm, shows bad performance on multimodal problems, taking long generation time to obtain the optimum, converging on the local extrema in early generation. In this paper, we propose a new genetic algorithm with two new genetic mutational operators, i.e. global and local mutation operators, and no genetic crossover. The proposed algorithm is similar to Simple GA and the two genetic operators are as simple as the conventional mutation. They just mutate the genes from left or right end of a chromosome till the randomly selected gene is replaced. In fact, two operators are identical with each other except for the direction where they are applied. Their roles of shaking the population (global searching) and fine tuning (local searching) make the diversity of the individuals being maintained through the entire generation. The proposed algorithm is, therefore, robust and powerful.

  • PDF

Automatic Discrete Optimum Design of Space Trusses using Genetic Algorithms (유전자알고리즘에 의한 공간 트러스의 자동 이산화 최적설계)

  • Park, Choon-Wook;Youh, Baeg-Yuh;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.125-134
    • /
    • 2001
  • The objective of this study is the development of size discrete optimum design algorithm which is based on the GAs(genetic algorithms). The algorithm can perform size discrete optimum designs of space trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of space trusses and the constraints are limite state design codes(1998) and displacements. The basic search method for the optimum design is the GAs. The algorithm is known to be very efficient for the discrete optimization. This study solves the problem by introducing the GAs. The GAs consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. In the genetic process of the simple GAs, there are three basic operators: reproduction, cross-over, and mutation operators. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying GAs to optimum design examples.

  • PDF

Optimum Design for Rotor-bearing System Using Advanced Genetic Algorithm (향상된 유전알고리듬을 이용한 로터 베어링 시스템의 최적설계)

  • Kim, Young-Chan;Choi, Seong-Pil;Yang, Bo-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.533-538
    • /
    • 2001
  • This paper describes a combinational method to compute the global and local solutions of optimization problems. The present hybrid algorithm uses both a genetic algorithm and a local concentrate search algorithm (e. g simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm but also supplies a more accurate solution. In addition, this algorithm can find the global and local optimum solutions. The present algorithm can be supplied to minimize the resonance response (Q factor) and to yield the critical speeds as far from the operating speed as possible. These factors play very important roles in designing a rotor-bearing system under the dynamic behavior constraint. In the present work, the shaft diameter, the bearing length, and clearance are used as the design variables.

  • PDF

A Study on the Optimal Facility Layout Design Using an Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 최적 공간 배치 설계에 관한 연구)

  • 한성남;이규열;노명일
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.3
    • /
    • pp.174-183
    • /
    • 2001
  • This study proposes an improved genetic algorithm (GA) to derive solutions for facility layout problems having inner walls and passages. The proposed algorithm models the layout of facilities on a flour-segmented chromosome. Improved solutions are produced by employing genetic operations known as selection, crossover, inversion, mutation, and refinement of these genes for successive generations. All relationships between the facilities and passages are represented as an adjacency graph. The shortest path and distance between two facilities are calculated using Dijkstra's algorithm of graph theory. Comparative testing shows that the proposed algorithm performs better than other existing algorithm for the optimal facility layout design. Finally, the proposed algorithm is applied to ship compartment layout problems with the computational results compared to an actual ship compartment layout.

  • PDF

Design of optimal BPCGH using combination of GA and SA Algorithm (GA와 SA 알고리듬의 조합을 이용한 최적의 BPCGH의 설계)

  • 조창섭;김철수;김수중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.468-475
    • /
    • 2003
  • In this Paper, we design an optimal binary phase computer generated hologram for Pattern generation using combined genetic algorithm and simulated annealing algorithm together. To design an optimal binary phase computer generated hologram, in searching process of the proposed method, the simple genetic algorithm is used to get an initial random transmittance function of simulated annealing algorithm. Computer simulation shows that the proposed algorithm has better performance than the genetic algorithm or simulated annealing algorithm of terms of diffraction efficiency

A study on Improved Genetic Algorithm to solve nonlinear optimization problems (비선형 최적화문제의 해결을 위한 개선된 유전알고리즘의 연구)

  • 우병훈;하정진
    • Korean Management Science Review
    • /
    • v.13 no.1
    • /
    • pp.97-109
    • /
    • 1996
  • Genetic Algorithms have been successfully applied to various problems (for example, engineering design problems with a mix of continuous, integer and discrete design variables) that could not have been readily solved with traditional computational techniques. But, several problems for which conventional Genetic Algorithms are ill defined are premature convergence of solution and application of exterior penalty function. Therefore, we developed an Improved Genetic Algorithms (IGAs) to solve above two problems. As a case study, IGAs is applied to several nonlinear optimization problems and it is proved that this algorithm is very useful and efficient in comparison with traditional methods and conventional Genetic Algorithm.

  • PDF

Multi-Objective Optimum Shape Design of Rotor-Bearing System with Dynamic Constraints Using Immune-Genetic Algorithm (면역.유전 알고리듬을 이용한 로터 베어링시스템의 다목적 형상최적설계)

  • Choe, Byeong-Geun;Yang, Bo-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1661-1672
    • /
    • 2000
  • An immune system has powerful abilities such as memory, recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this pap er, the combined optimization algorithm (Immune- Genetic Algorithm: IGA) is proposed for multi-optimization problems by introducing the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The optimizing ability of the proposed combined algorithm is identified by comparing the result of optimization with simple genetic algorithm for two dimensional multi-peak function which have many local optimums. Also the new combined algorithm is applied to minimize the total weight of the shaft and the transmitted forces at the bearings. The inner diameter oil the shaft and the bearing stiffness are chosen as the design variables. The dynamic characteristics are determined by applying the generalized FEM. The results show that the combined algorithm and reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic conatriants.

An Agent Gaming and Genetic Algorithm Hybrid Method for Factory Location Setting and Factory/Supplier Selection Problems

  • Yang, Feng-Cheng;Kao, Shih-Lin
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.4
    • /
    • pp.228-238
    • /
    • 2009
  • This paper first presents two supply chain design problems: 1) a factory location setting and factory selection problem, and 2) a factory location setting and factory/supplier selection problem. The first involves a number of location known retailers choosing one factory to supply their demands from a number of factories whose locations are to be determined. The goal is to minimize the transportation and manufacturing cost to satisfy the demands. The problem is then augmented into the second problem, where the procurement cost of the raw materials from a chosen material supplier (from a number of suppliers) is considered for each factory. Economic beneficial is taken into account in the cost evaluation. Therefore, the partner selections will influence the cost of the supply chain significantly. To solve these problems, an agent gaming and genetic algorithm hybrid method (AGGAHM) is proposed. The AGGAHM consecutively and alternatively enable and disable the advancement of agent gaming and the evolution of genetic computation. Computation results on solving a number of examples by the AGGAHM were compared with those from methods of a general genetic algorithm and a mutual frozen genetic algorithm. Results showed that the AGGAHM outperforms the methods solely using genetic algorithms. In addition, various parameter settings are tested and discussed to facilitate the supply chain designs.

Optimazation of Simulated Fuzzy Car Controller Using Genetic Algorithm (유전자 알고즘을 이용한 자동차 주행 제어기의 최적화)

  • Kim Bong-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.212-219
    • /
    • 2006
  • The important problem in designing a Fuzzy Logic Controller(FLC) is generation of fuzzy control rules and it is usually the case that they are given by human experts of the problem domain. However, it is difficult to find an well-trained expert to any given problem. In this paper, I describes an application of genetic algorithm, a well-known global search algorithm to automatic generation of fuzzy control rules for FLC design. Fuzzy rules are automatically generated by evolving initially given fuzzy rules and membership functions associated fuzzy linguistic terms. Using genetic algorithm efficient fuzzy rules can be generated without any prior knowledge about the domain problem. In addition expert knowledge can be easily incorporated into rule generation for performance enhancement. We experimented genetic algorithm with a non-trivial vehicle controling problem. Our experimental results showed that genetic algorithm is efficient for designing any complex control system and the resulting system is robust.

Modified Genetic Algorithm for Fast Beam Formation in Wireless Network (무선 메쉬 네트워크 환경에서 빠른 빔형성을 위한 개선된 유전알고리즘)

  • Lee, Dong-kyu;Ahn, Jong-min;Park, Chul;Kim, Han-na;Chung, Jae-hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1686-1692
    • /
    • 2015
  • This paper proposes a modified genetic algorithm that has the same beamforming performance and a fast convergence speed using general genetic algorithm in order to form a beam for the mobile node in a mesh network. The proposed beamforming genetic algorithm selects a part of chromosome a high fitness value in mating process to obtain fast convergence speed, and rest part of chromosome with longer fitness value in order to avoid local solution. Furthermore, the reference beam pattern with Gaussian shape reduces additional convergence speed. Simulation shows that the convergence speed of proposed algorithm improves 20% compared with that of conventional beamforming genetic algorithm.