• Title/Summary/Keyword: generic matrices

Search Result 5, Processing Time 0.021 seconds

THE POINCARE SERIES OF GENERIC 2 BY 2 MATRICES

  • LEE WOO
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.585-589
    • /
    • 2005
  • In [1], the structure of C(2,2) is determined as the polynomial ring in 5 variables. In this work, we show that C(2,3) is a free module over the subring of 9 variables. We explicitly give a presentation of C(2, 3) as free module over the polynomial ring.

Development of Biosphere Assessment Modeling Strategy for Deep Geological Disposal in Generic Site of the Korean Peninsula

  • Do Hyun Kim;Wontak Lee;Dongki Kim;Jonghyun Kim;Joowan Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.149-164
    • /
    • 2023
  • As part of the safety case development for generic disposal sites in Korea, it is necessary to develop generic assessment models using various geosphere-biosphere interfaces (GBIs) and potentially exposed groups (PEGs) that reflect the natural environmental characteristics and the lifestyles of people in Korea. In this study, a unique modeling strategy was developed to systematically construct and select Korean generic biosphere assessment models. The strategy includes three process steps (combination, screening, and experts' scoring) for the biosphere system conditions. First, various conditions, such as climate, topography, GBIs, and PEGs, were combined in the biosphere system. Second, the combined calculation cases were configured into interrelation matrices to screen out some calculation cases that were highly unlikely or less significant in terms of the exposure dose. Finally, the selected calculation cases were prioritized based on expert judgment by scoring the knowledge, probability, and importance. The results of this study can be implemented in the development of biosphere assessment models for Korean generic sites. It is believed that this systematic methodology for selecting the candidate calculation cases can contribute to increasing the confidence of future site-specific biosphere assessment models.

Development of a Truss Structure Analysis Model based on Cellular Automata and Object-oriented Simulation Environment (셀룰러 오토마타와 객체기반 시뮬레이션 환경에 의한 트러스 구조의 해석모델 개발)

  • Kim, Taegon;Lee, JeongJae;Suh, Kyo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • The aim of this study is to develop a simulation model for analyzing 2D truss structure using Generic Agricultural System Simulator (GASS). Although the truss is simple structure, numerical methods based on matrix analysis are cumbersome and complicated. This study suggests simple and convenient methods to remove calculating steps for whole stiffness matrices. The simulation environment based on independency of object-oriented components on GASS consists of component development and component deploy stages. A component for a truss structure is implemented based on equilibrium equations at nodes. The simulator can analyze truss structures through deploying components with attributes and links. The examples using GASS show intuitive graphical results of the movements of truss nodes.

Design of Suboptimal Robust Kalman Filter via Linear Matrix Inequality (선형 행렬 부등식을 이용한 준최적 강인 칼만 필터의 설계)

  • Jin, Seung-Hee;Yoon, Tae-Sung;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.560-570
    • /
    • 1999
  • This paper formulates the suboptimal robust Kalman filtering problem into two coupled Linear Matrix Inequality (LMI) problems by applying Lyapunov theory to the augmented system which is composed of the state equation in the uncertain linear system and the estimation error dynamics. This formulations not only provide the sufficient conditions for the existence of the desired filter, but also construct the suboptimal robust Kalman filter. The proposed filter can guarantee the optimized upper bound of the estimation error variance for uncertain systems with parametric uncertainties in both the state and measurement matrices. In addition, this paper shows how the problem of finding the minimizing solution subject to Quadratic Matrix Inequality (QMI), which cannot be easily transformed into LMI using the usual Schur complement formula, can be successfully modified into a generic LMI problem.

  • PDF

An Efficient Computation of Matrix Triple Products (삼중 행렬 곱셈의 효율적 연산)

  • Im, Eun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.141-149
    • /
    • 2006
  • In this paper, we introduce an improved algorithm for computing matrix triple product that commonly arises in primal-dual optimization method. In computing $P=AHA^{t}$, we devise a single pass algorithm that exploits the block diagonal structure of the matrix H. This one-phase scheme requires fewer floating point operations and roughly half the memory of the generic two-phase algorithm, where the product is computed in two steps, computing first $Q=HA^{t}$ and then P=AQ. The one-phase scheme achieved speed-up of 2.04 on Intel Itanium II platform over the two-phase scheme. Based on memory latency and modeled cache miss rates, the performance improvement was evaluated through performance modeling. Our research has impact on performance tuning study of complex sparse matrix operations, while most of the previous work focused on performance tuning of basic operations.

  • PDF