• Title/Summary/Keyword: generator rotor

Search Result 507, Processing Time 0.03 seconds

A Power Analysis for DFIG According to Rotor Excitation (이중여자 유도발전기의 회전자 여자에 따른 출력해석)

  • 김철호;서영택;오철수
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.299-306
    • /
    • 2003
  • Doubly-Fed Induction Generator(DFIG) is adequate to maximize the energy capture from wind energy, whereby the turbine speed can be adjusted to a speed, at which a rated tip speed ratio be kept. In this paper, a power analysis for DFIG and its characteristics of power flow in grid-connected operation, are dealt with in speed range of super- and sub-synchronous region. In a test of the machine, whereby a doubly excited circuit configuration in stator as well as rotor with back to back PWM inverter have been equipped, a constant input torque is given and in that condition, power new in stator and rotor circuit have been measured and compared with theoretical value. Furthermore, the power factor in stator and rotor circuit have been examined.

Protection relaying algorithm for DFIG using a DQ equivalent circuit (DQ 등가회로를 이용한 DFIG 보호계전방식)

  • Kang, Yong-Cheol;Lee, Ji-Hoon;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.23-24
    • /
    • 2007
  • Most of modern wind turbines employs a doubly-fed induction generator (DFIG) system because it has many advantages due to variable-speed operation, relatively high efficiency and it small converter size. The DFIG system uses a wound rotor induction machine so that the magnetizing current of the generator can be fed from both the stator and the rotor. This paper presents a protection relaying algorism for DFIG using the DQ equivalent circuits. The induced voltages calculated from the stator and rotor sides are nearly the same in the steady state. They become different in the DQ equivalent circuits during an internal fault. The proposed algorithm compares the inducted voltages estimated from the stator and the rotor circuit converted into the stationary reference frame. If the difference between the induced voltages exceeds the threshold, the proposed algorithm detects an turn-to-turn fault.

  • PDF

Vibration Analysis of Rotating System in a Turbine and Generator Set: Comparison of Shrunk-fit Disc Rotor and Welded Drum Rotor (터빈발전기의 축계 진동 해석: 열박음형과 용접형 로터의 진동 특성 비교)

  • Ha, Hyun-Cheon;Park, Chul-Hyun;Choi, Seong-Pil;Kim, Kay-Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.599-604
    • /
    • 2000
  • Excessive vibration magnitude results in serious damage and economic losses in the turbine and generator system. Therefore, it is of importance to evaluate the accurate dynamic characteristics of the system in advance. In this paper, rotordynamic characteristics of both the shrunk-fit disc and welded drum rotors have been investigated to ensure an excellent running behavior of the system in which low-pressure(LP) turbines of a nuclear power plant were retrofitted to improve thermal efficiency and reliability. Analysis shows that the welded drum rotor has good torsional characteristics rather than the shrunk-fit disc rotor. In addition, verification testing of field test was performed to confirm the retrofit. Test results are good agreement with analysis ones.

  • PDF

A Study on Out-of-Step Relay Operation due to Delayed Fault Clearing in Transmission Line (송전선로 고장제거 지연에 따른 동기 탈조 계전기 동작 검토)

  • Park, Ji-Kyung;Kim, Kwang-Hyun;Kim, Chul-Hwan;Lyu, Young-Sik;Yang, Jeong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1466-1473
    • /
    • 2017
  • Generally, electrical torque in synchronous generator is balanced with the rotor mechanical torque under steady-state condition. Thus, the synchronous generator rotor rotates at constant speed. However, under fault condition, the electrical torque output is suddenly decreased and the sum of both torques does not remain constant. If the mechanical torque is not decreased at the same time, the generator rotor would accelerate. Therefore, this accelerating generator rotates at different speeds with respect to other generators in the power system. This phenomena is called as Out-of-Step (OOS). In this paper, we presented a certain two-step type quadrilateral OOS relay setting, which is applicable in actual field, and examined the validity of its setting value with OOS simulation conditions due to delayed fault clearing in transmission line. In order to conduct the study of OOS relay characteristics, we checked the impedance locus and generator output characteristics under the various delayed fault clearing conditions. Moreover, we proposed a countermeasure for avoiding the misoperation of OOS relay during the stable swing by modifying the setting values.

Constant power. high power factor drive of DFIG for wind power generation in the wide wind speed (넓은 풍속에서의 풍력발전용 권선형 유도발전기의 정출력.고역률 운전)

  • Lee, Woo-Suk;Kim, Kwang-Tae;Chung, Soon-Yong;Shon, Je-Bong;Bae, Jong-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.693-695
    • /
    • 2000
  • Wide operating range and speed control is needed for wind power generating and a Doubly Fed Induction Generator(DFIG) has good adaptivity for that purpose. This paper deals with power and power factor control using the Grid connected DFIG in the wide speed regions, by controlling frequency and voltage fed to the rotor. Power flow of the DFIG and steady-state algebraic equations of the equivalent circuit are analyzed. For a normal operating region, in which the generator ratings were not exceeded, the rotor current was either less than or equal to the rated value. Accordingly, the optimal power factor can be selected relative to the permissible rated current at the rotor coil which controls the magnitude of the injected rotor voltage to the rotor according to a given rotor frequency.

  • PDF

Analysis and Compensation of Current Measurement Errors in a Doubly Fed Induction Generator

  • Son, Yung-Deug;Im, Won-Sang;Park, Han-Seok;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.532-540
    • /
    • 2014
  • It is necessary to measure the current of rotor for controlling the active and reactive power generated by the stator side of the doubly fed induction generator (DFIG) system. There are offset and scaling errors in the current measurement. The offset and scaling errors cause one and two times current ripples of slip frequency in the synchronous reference frame of vector control, respectively. This paper proposes a compensation method to reduce their ripples. The stator current is variable according to the wind force but the rotor current is almost constant. Therefore input of the rotor current is more useful for a compensation method. The proposed method adopts the synchronous d-axis current of the rotor as the input signal for compensation. The ripples of the measurement errors can be calculated by integrating the synchronous d-axis stator current. The calculated errors are added to the reference current of rotor as input of the current regulator, then the ripples are reduced. Experimental results show the effectiveness of the proposed method.

A Coupled Circuit and Field Analysis of a Stand-Alone Permanent-Magnet Synchronous Generator with Inset Rotor

  • Chan T. F.;Yan Lie-Tong;Lai L. L.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.253-257
    • /
    • 2005
  • By using a coupled circuit, time-stepping, two-dimensional finite element method (2-D FEM), the performance of a stand-alone permanent-magnet synchronous generator (PMSG) with inset rotor can be computed without involving the classical two-axis model. The effects of interpolar air gap length and armature resistance on the load characteristics are investigated. It is shown that the interpolar flux density, and hence the amount of voltage compensation, is affected by magnetic saturation. Validity of the coupled circuit and field analysis is confirmed by experiments on a prototype generator. The machine exhibits an approximately level load characteristic when it is supplying an isolated unity-power-factor load.

Development of On-Line Monitoring System for Pumped Storage Generator/Motor (양수발전소 발전-전동기 운전중 감시 시스템의 개발)

  • 김희동;주영호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.168-174
    • /
    • 2004
  • On-line monitoring system(OMS) has been developed for the pumped storage generator/motor The OMS is applied to diagnosis of the PD(partial discharge) activity of stator insulation, the shorted-turn of rotor winding and the variation of the air-gap between stator and rotor. The OMS consists of DAS(data acquisition system), main server system, gateway and display PC. The DAS measures the PD, the shorted-turn and air-gap from three sensors installed on the generator/motor. The gateway controls the data which sent by DAS. The main server system saves the data, analyzes the data and conducts the diagnostic algorithm. The display PC shows the diagnostic results of partial discharge, shorted-turn and air-gap. Field tests were conducted using PDA(partial discharge analyzer). The results of the OMS and PDA measurements can be directly correlated with normalized quantity number(NQN), PD magnitude(Qm) and PD pattern.

Development of an Unmanned Control System of Induction Generator for a Wave Power Plant

  • Hwan, Jeon-Bong;Lim, Yong-Kon;Hong, Seok-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.74.5-74
    • /
    • 2001
  • The wave power plant is a generating system to convert the wave energy resources to electric energy. ´CHUJEON A´, which is a prototype of wave power plant developed by KORDI(Korea Ocean Research and Development Institute), has been launched for its performance test. A wound rotor induction machine is adopted as a generator for the power plant to acquire constant frequency and voltage over wide range of rotor speed. Because the generator of ´CHUJEON A´ has no connection to the power grid line on land, all of the processes to generate and consume the electricity have to be conducted on the floating plant. This paper deals with the design and implementation of the unmanned control system for ´CHUJEON A´. The system includes generator control system, power conversion and charging system, data acquisition and wireless communication system ...

  • PDF

A Study of On-line Monitoring System for a KEPCO Pumped Storage Generator/Motor

  • Kim Hee-Dong;Ju Young-Ho;Kim Yong-Joo;Cho Kyu-Bock
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.90-95
    • /
    • 2006
  • An on-line diagnostic test has been studied and performed for the pumped storage generator/motor. This study aims at reducing the diagnostic cost, minimizing the technical dependency on third party manufactures. Further design of on-line diagnostic system such as shorted-turn of rotor winding, partial discharge (PD) of stator winding and air-gap between stator and rotor for pumped storage generator/motor has been verified. In addition, it needs to be validated on site performance of the developed continuous on-line monitoring system for corresponding tasks for the improvement of the availability & reliability during operation.