• Title/Summary/Keyword: generator failure

Search Result 165, Processing Time 0.019 seconds

Development of Optimum Global Failure Prediction Model for Steam Generator Tube with Two Parallel Cracks (평행한 두 개의 균열이 존재하는 증기발생기 세관의 최적 광범위파손 예측모델 개발)

  • Moon Seong ln;Chang Yoon Suk;Lee Jin Ho;Song Myung Ho;Choi Young Hwan;Kim Joung Soo;Kim Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.754-761
    • /
    • 2005
  • The 40\% of wall thickness criterion which has been used as a plugging rule of steam generator tubes is applicable only to a single cracked tube. In the previous studies performed by authors, several global failure prediction models were introduced to estimate the failure loads of steam generator tubes containing two adjacent parallel axial through-wall cracks. These models were applied for thin plates with two parallel cracks and the COD base model was selected as the optimum one. The objective of this study is to verify the applicability of the proposed optimum global failure prediction model for real steam generator tubes with two parallel axial through-wall cracks. For the sake of this, a series of plastic collapse tests and finite element analyses have been carried out fur the steam generator tubes with two machined parallel axial through-wall cracks. Thereby, it was proven that the proposed optimum failure prediction model can be used as the best one to estimate the failure load quite well. Also, interaction effects between two adjacent cracks were assessed through additional finite element analyses to investigate the effect on the global failure behavior.

Evaluation of Plastic Collapse Pressure for Steam Generator Tube with Non-Aligned Two Axial Through-Wall Cracks (두 개의 비대칭 축방향 관통균열이 존재하는 증기발생기 세관의 소성붕괴압력 평가)

  • Moon Seong-In;Chang Yoon-Suk;Lee Jin-Ho;Song Myung-Ho;Choi Young-Hwan;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1070-1077
    • /
    • 2005
  • The $40\%$ of wall thickness criterion which has been used as a plugging rule is applicable only to a single cracked steam generator tubes. In the previous studies performed by authors, several failure prediction models were introduced to estimate the plastic collapse pressures of steam generator tubes containing collinear or parallel two adjacent axial through-wall cracks. The objective of this study is to examine the failure prediction models and propose optimum ones for non-aligned two axial through-wall cracks in steam generator tubes. In order to determine the optimum ones, a series of plastic collapse tests and finite element analyses were carried out for steam generator tubes with two machined non-aligned axial through-wall cracks. Thereby, either the plastic zone contact model or COD based model was selected as the optimum one according to axial distance between two clacks. Finally, the optimum failure prediction model was used to demonstrate the conservatism of flaw characterization rules for various multiple flaws according to ASME code.

Assessment of Steam Generator Tubes with Multiple Axial Through-Wall Cracks (축방향 다중관통균열이 존재하는 증기발생기 세관 평가법)

  • Moon, Seong-In;Chang, Yoon-Suk;Kim, Young-Jin;Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1741-1751
    • /
    • 2004
  • It is commonly requested that the steam generator tubes wall-thinned in excess of 40% should be plugged. However, the plugging criterion is known to be too conservative for some locations and types of defects and its application is limited to a single crack in spite of the fact that the occurrence of multiple through-wall cracks is more common in general. The objective of this research is to propose the optimum failure prediction models for two adjacent through-wall cracks in steam generator tubes. The conservatism of the present plugging criteria was reviewed using the existing failure prediction models for a single crack, and six new failure prediction models for multiple through-wall cracks have been introduced. Then, in order to determine the optimum ones among these new local or global failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two adjacent through-wall cracks in thin plate were carried out. Thereby, the reaction force model, plastic zone contact model and COD (Crack-Opening Displacement) base model were selected as the optimum ones for assessment of steam generator tubes with multiple through-wall cracks. The selected optimum failure prediction models, finally, were used to estimate the coalescence pressure of two adjacent through-wall cracks in steam generator tubes.

Failure Probability Estimation of Steam Generator Tube Containing Axial Through-Wall Crack (축방향 관통균열이 존재하는 증기발생기 세관의 파손확률 예측)

  • Moon Seong In;Lee Sang Min;Bae Sung Ryul;Chang Yoon Suk;Hwang Seong Sik;Kim Joung Soo;Kim Young Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.137-143
    • /
    • 2005
  • The integrity of steam generator tubes in nuclear power plant should be maintained sufficiently during operation. For sake of this, complicated assessment procedures are required such as fracture mechanics analysis, etc. The integrity assessment of tubes has been performed by using conventional deterministic approaches while there are many uncertainties to carry out a rational evaluation. In this respect, probabilistic integrity assessment is considered as an alternative method for integrity assessment. The objectives of this study are to develop an integrity assessment system based on probabilistic fracture mechanics and to predict the failure probability of steam generator tubes containing an axial through-wall crack. The developed integrity assessment system consists of three evaluation modules, which apply first order reliability method, second order reliability method and Monte Carlo simulation method, respectively. The system has been applied to predict failure probability of steam generator tubes and the estimation results showed a promising applicability of the probabilistic integrity assessment system.

Evaluation of Plastic Collapse Behavior for Multiple Cracked Structures (다중균열 구조물의 소성붕괴거동 평가)

  • Moon, Seong-In;Chang, Yoon-Suk;Kim, Young-Jin;Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan;Hwang, Seong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1813-1821
    • /
    • 2004
  • Until now, the 40% of wall thickness criterion, which is generally used for the plugging of steam generator tubes, has been applied only to a single cracked geometry. In the previous study by the authors, a total number of 9 local failure prediction models were introduced to estimate the coalescence load of two collinear through-wall cracks and, then, the reaction force model and plastic zone contact model were selected as the optimum ones. The objective of this study is to estimate the coalescence load of two collinear through-wall cracks in steam generator tube by using the optimum local failure prediction models. In order to investigate the applicability of the optimum local failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two collinear through-wall cracks in steam generator tube were carried out. Thereby, the applicability of the optimum local failure prediction models was verified and, finally, a coalescence evaluation diagram which can be used to determine whether the adjacent cracks detected by NDE coalesce or not has been developed.

Failure Assessment and Strength of Steam Generator Tubes with Wall Thinning (증기발생기 전열관 감육부의 강도 및 손상평가)

  • Seong, Ki-Yong;Ahn, Seok-Hwan;Yoon, Ja-Moon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.50-59
    • /
    • 2007
  • Steam generator tubes are degraded from wear, stress corrosion cracking, rupture and fatigue and so on. Therefore, the failure assessment of steam generator tube is very important for the integrity of energy plants. In the steam generator tubes, sometimes, the local wall thinning may result from severe degradations such as erosion-corrosion damage and wear due to vibration. In this paper, the elasto-plastic analysis was performed by FE code ANSYS on steam generator tubes with wall thinning. Also, the four-point bending tests were performed on the wall thinned specimens, and then it was compared with the analysis results. We evaluated the failure mode, fracture strength and fracture behavior from the experiment and FE analysis. Also, it was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area from FE analysis.

A Development of Energency Power Automatic Transfer Module in home (가정용 비상 전원 절체 모듈 개발)

  • Joo, Nam-Kyu;Kim, Kwan-Yuong;Kim, Nam-Ho;Lee, Jong-Myong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.321-323
    • /
    • 2009
  • When power failure occurs at multi-housing complex, auxiliary generator or emergency generator starts to provide power to households. This power is connected to emergency power ELB(Earth Leakage Breaker) at home distribution panel board and supplies power only for emergency light in living room but for heating system, refrigerator and other inevitable apparatuses that are in need of uninterruptible power. Since those domestic appliance are fed from common power line, they are inoperable during power failure. Our research is to resolve this problem by developing compatible relay-drive common/emergency-power ATS (automatic transfer switch) for home distribution panel board. In case of power failure, it transfers automatically and commences to provide power from emergency generator. Through this, Consumers can reach satisfaction where common power loads operate without any problem under both ordinary and power failure condition.

  • PDF

Characteristics of Insulation Diagnosis and Failure in Gas Turbine Generator Stator Windings

  • Kim, Hee-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.280-285
    • /
    • 2014
  • In order to evaluate the insulation deterioration in the stator windings of five gas turbine generators(137 MVA, 13.8 kV) which has been operated for more than 13 years, diagnostic test and AC dielectric breakdown test were performed at phases A, B and C. These tests included measurements of AC current, dissipation factor, partial discharge (PD) magnitude and capacitance. ${\Delta}I$ and ${\Delta}tan{\delta}$ in all three phases (A, B and C) of No. 1 generator stator windings showed that they were in good condition but PD magnitude indicated marginally serviceable and bad level to the insulation condition. Overall analysis of the results suggested that the generator stator windings were indicated serious insulation deterioration and patterns of the PD in all three phases were analyzed to be internal, slot and spark discharges. After the diagnostic test, an AC overvoltage test was performed by gradually increasing the voltage applied to the generator stator windings until electrical insulation failure occurred, in order to determine the breakdown voltage. The breakdown voltage at phases A, B and C of No. 1 generator stator windings failed at 28.0 kV, 17.9 kV, and 21.3 kV, respectively. The breakdown voltage was lower than that expected for good-quality windings (28.6 kV) in a 13.8kV class generator. In the AC dielectric breakdown and diagnostic tests, there was a strong correlation between the breakdown voltage and the voltage at which charging current increases abruptly ($P_{i1}$, $P_{i2}$).

Optimum Replacement Times for a Steam Generator (증기발생기 최적 교체시기 결정에 관한 연구)

  • Hur, Jung-Hoon;Yun, Won-Young
    • IE interfaces
    • /
    • v.15 no.1
    • /
    • pp.89-98
    • /
    • 2002
  • This paper considers the optimum replacement times of a steam generator in nuclear power plant with failure data. It is assumed that the failure pattern of units is given as a Weibull distribution and repair and periodic preventive maintenance are performed periodically. The maximum likelihood method is used to estimated the Weibull parameters of failure distribution from failure data. Relpacement, output-decresing and maintenance costs are considered to determine the optimal replacement times by simulation. Numerical examples are included with actual failure data and cost estimators.

Finite Element Analysis for Wall Thinned Steam Generator Tubes (감육된 증기발생기 전열관의 유한요소 해석)

  • Seong, K.Y.;Ahn, S.H.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.38-44
    • /
    • 2006
  • Failure assessment of steam generator tube are very important for the integrity of energy plants. In pipes of energy plants, sometimes, the local wall thinning may result from severe erosion-corrosion damage. Recently, the effects of local wall thinning on fracture strength and fracture behavior of piping system have been well studied. In this paper, the elasto-plastic analysis is performed by FE code ANSIS on steam generator tube with wall thinning. We evaluated the failure mode, fracture strength and fracture behavior from FE analysis. It was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area.

  • PDF