• Title/Summary/Keyword: generalized diameter

Search Result 73, Processing Time 0.024 seconds

Numerical Analysis of Electrical Resistance Variation according to Geometry of Underground Structure (지하매설물의 기하학적 특성에 따른 전기저항 변화에 대한 수치 해석 연구)

  • Kim, Tae Young;Ryu, Hee Hwan;Chong, Song-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.49-62
    • /
    • 2024
  • Reckless development of the underground by rapid urbanization causes inspection delay on replacement of existing structure and installation new facilities. However, frequent accidents occur due to deviation in construction design planned by inaccurate location information of underground structure. Meanwhile, the electrical resistivity survey, knowns as non-destructive method, is based on the difference in the electric potential of electrodes to measure the electrical resistance of ground. This method is significantly advanced with multi-electrode and deep learning for analyzing strata. However, there is no study to quantitatively assess change in electrical resistance according to geometric conditions of structures. This study evaluates changes in electrical resistance through geometric parameters of electrodes and structure. Firstly, electrical resistance numerical module is developed using generalized mesh occurring minimal errors between theoretical and numerical resistance values. Then, changes in resistances are quantitatively compared on geometric parameters including burial depth, diameter of structure, and distance electrode and structure under steady current condition. The results show that higher electrical resistance is measured for shallow depth, larger size, and proximity to the electrode. Additionally, electric potential and current density distributions are analyzed to discuss the measured electrical resistance around the terminal electrode and structure.

Measurement of Dose Distribution in Small Beams of Philips 6 and 8 MVX Linear Accelerator (Philips LINAC 6 MV와 8 MV X선 소조사연에 대한 선량분포 측정)

  • Suh Tae-suk;Yoon Sei Chul;Shinn Kyung Sub;Park Yong Whee
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.143-152
    • /
    • 1991
  • The work suggested in this paper addresses a method for collecting beam data for small circular fields. Beam data were obtained from philips 6 and 8 MV LINAC at Dept. Radiation Therapy at Gainesville Incorporated and Shands Teaching Hospital. Specific quantities measured include tissue maximum ratio (TMR), off-axis ratio (OAR) and relative output factor (ROF) In small field irradiation, special collimators were used to produce circular fields of 1 cm to 3 cm diameter in 2 mm steps, measured at SAO (soura axis distance) of 100 cm. Diode detector was chosen for primary beam measurement and compared with measurements made with photographic film and TLD dosimeters. The measured TMRs and OARs were formulated from limited measurements to generate basic beam data for reference set-up. The empirical formula were later, extended and generalized for any possible set-up using the trends of fitting parameters. The measured TMRs and OARs were well represented by the fitting formula developed.

  • PDF

Thermohydrodynamic Analysis and Pad Temperature Measurement of Tilting Pad Journal Bearing with Worn Pad (표면이 마모된 틸팅 패드 저널베어링의 열윤활 해석 및 온도 측정)

  • Lee, Donghyun;Sun, Kyungho;Kim, Byungock;Kang, Donghyuk
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.134-140
    • /
    • 2017
  • With the increase in adoption of tilting pad journal bearings (TPJBs), various failure mechanisms related to TPJBs have been reported, of which pad wear is a frequently reported one. Pad wear causes change in geometry of the bearing, which can sometimes result in the failure of the entire system. The objective of this research is to investigate the influence of pad wear on the pad temperature, which is one of the widely used condition monitoring methods for TPJBs. For the theoretical investigation, thermohydrodynamic (THD) analysis was conducted by solving the generalized Reynolds equation and the 3D energy equation. The results of the analysis show that the temperature of the loaded pad increases while that of the unloaded pad decreases, when there is wear on the loaded pads. In addition, the minimum film thickness decreases with an increase in the wear depth. A validation test was conducted with a test rig, which mimics the axial turbine when a test rotor is supported by two TPJBs. The test bearing consists of five pads with a diameter of 60 mm, and a resistance temperature detector (RTD) is installed in the pad for temperature monitoring. The test was performed by replacing the two loaded pads with the worn pad. The test result for the TPJB with wear depth of $30{\mu}m$ show that the temperatures of the loaded pads are $8^{\circ}C$ higher and that of the unloaded pad is $2.5^{\circ}C$ lower than that of the normal TPJB. In addition, the predicted pad temperature shows good agreement with the measured pad temperatures.

Forward-Looking Ultrasound Imaging Transducer : I. Analysis and Design (전향 초음파 영상 트랜스듀서 : I. 해석 및 설계)

  • Lee, Chan-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.73-86
    • /
    • 1995
  • The transducer section of the forward-looking ultrasound imaging catheter (FLUIC) consists of a circular piezoelectric element as a vibrator and a conical acoustic mirror as a perfect reflector. A small diameter piezoelectric transducer element is mounted on the side of a catheter's rotating shaft. The unique design of FLUIC provides the capability to form a two-dimensional image of a cross-section of vessel in front of the catheter, which is lacking in the present generation of intravascular ultrasound (IVUS) transducers, as well as a conventional side view image. The mirror configuration for the transducer section of the FLUIC is designed using an approximated ray tracing techniques. The diffraction transfer function approach [1] developed for the field prediction from primary sources is generalized and extended to predict the secondary diffraction characterstics from an acoustic mirror. The extended model is verified by simulation and experiment through a simple plane reflector and employed to analyzed the field characteristics of a FLUIC.

  • PDF

Successful High Flow Nasal Oxygen Therapy for Excessive Dynamic Airway Collapse: A Case Report

  • Park, Jisoo;Lee, Yeon Joo;Kim, Se Joong;Park, Jong Sun;Yoon, Ho Il;Lee, Jae Ho;Lee, Choon-Taek;Cho, Young-Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.4
    • /
    • pp.455-458
    • /
    • 2015
  • Excessive dynamic airway collapse (EDAC) is a disease entity of excessive reduction of the central airway diameter during exhalation, without cartilage collapse. An 80-year-old female presented with generalized edema and dyspnea at our hospital. The patient was in a state of acute decompensated heart failure due to pneumonia with respiratory failure. We accordingly managed the patient with renal replacement therapy, mechanical ventilation and antibiotics. Bronchoscopy confirmed the diagnosis of EDAC. We scheduled extubation after the improvement of pneumonia and heart condition. However, extubation failure occurred due to hypercapnic respiratory failure with poor expectoration. Her EDAC was improved in response to high flow nasal oxygen therapy (HFNOT). Subsequently, the patient was stabilized and transferred to the general ward. HFNOT, which generates physiologic positive end expiratory pressure (PEEP) effects, could be an alternative and effective management of EDAC. Further research and clinical trials are needed to demonstrate the therapeutic effect of HFNOT on EDAC.

Pulmonary artery rupture due to bacterial endocarditis complicated by patent ductus arteriosus. (동맥관개존증에 합병한 심내막염에 의한 폐동맥파열 실험 1례)

  • 조순걸
    • Journal of Chest Surgery
    • /
    • v.18 no.4
    • /
    • pp.537-541
    • /
    • 1985
  • Recently, we met a 12 year old female patient who suffered from bacterial endocarditis and pericarditis which were complicated by patent ductus arteriosus. She was admitted to our hospital because of dyspnea, fever, headache, and generalized ache for 10 days. The initial diagnosis was bacterial endocarditis and pericarditis complicated by patent ductus arteriosus and congestive heart failure. At first, we tried to treat the patient medically with digitalis, diuretics, and massive antibiotics. On echocardiography large amount of pericardial fluid was accumulated mainly right anterior aspect and also noted a large vegetation at pulmonary valve area. With vigorous medical treatment including repeated pericardiocentesis, the patient showed no improvement. So we decided to perform pericardiectomy for elimination of the most probable septic focus. On operation, we encountered an unpredicted event, the pericardium was thickened, distended, and its surface showed pulsating which meant connecting to systemic circulation. We decided to close the operative wound and reoperate her under cardiopulmonary bypass later. On the next day, we operated her under cardiopulmonary bypass later. On the next day we operated her under cardiopulmonary bypass. The operative findings were ruptured main pulmonary artery about 1.5cm in diameter on its ventral portion, the blood from the ruptured main pulmonary artery was filled up the localized pericardial sac due to previous pericarditis. Through the ruptured main pulmonary artery, we also found 0.5cm diametered patent ductus arteriosus. With the aid of partial cardiopulmonary bypass and inserting 24F ballooned Foley catheter at aorta, pericardiectomy was performed first. After completion of the pericardiectomy, total cardiopulmonary bypass was established. With minimum pump flow [0.3L/min/m2] the PDA was closed with two Teflon-felted 4-0 Prolene interrupted sutures. The ruptured main pulmonary artery was also closed using thickened pericardium with three Teflon-felted 4-0 Prolene interrupted sutures. The operation was successful and postoperative course was uneventful. She was discharged on the 16th POD. We report this case as a very rare secondary complication of bacterial endocarditis complicated by patent ductus arteriosus.

  • PDF

Numerical experiment on driftwood dynamics considering rootwad effect and wood collision

  • Kang, Taeun;Kimura, Ichiro;Onda, Shinichiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.267-267
    • /
    • 2019
  • Driftwood is one of serious problems in a river environment. In several countries, such as Indonesia, Japan, and Italy, the driftwood frequently appears in a river basin, and it can alter the channel bed, flow configuration by wood deposition and jam formation. Therefore, the studies related to driftwood have been actively conducted by many researchers to understand the mechanism of driftwood dynamics. In particular, wood motion by collision is one of the difficult issues in the numerical simulation because the calculation for wood collision requires significantly expensive calculation time due to small time step. Thus, this study conducted the numerical simulation in consideration of the wood motion by water flow and wood collision to understand the wood dynamics in terms of computation. We used the 2D (two-dimensional) depth-averaged velocity model, Nays2DH, which is a Eulerian model to calculate the water flow on the generalized coordinate. A Lagrangian type driftwood model, which expresses the driftwood as connected sphere shape particles, was employed to Nays2DH. In addition, the present study considered root wad effect by using larger diameter for a particle at a head of driftwood. An anisotropic bed friction was considered for the sliding motion dependent on stemwise, streamwise and motion directions. We particularly considered changeable draft at each particle and projection area by an angle between stemwise and flow directions to precisely reproduce the wood motions. The simulation results were compared with experimental results to verify the model. As a result, the simulation results showed good agreement with experimental results. Through this study, it would be expected that this model is a useful tool to predict the driftwood effect in the river flow.

  • PDF

Short-term Effect of Ambient Air Pollution on Emergency Department Visits for Diabetic Coma in Seoul, Korea

  • Kim, Hyunmee;Kim, Woojin;Choi, Jee Eun;Kim, Changsoo;Sohn, Jungwoo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.51 no.6
    • /
    • pp.265-274
    • /
    • 2018
  • Objectives: A positive association between air pollution and both the incidence and prevalence of diabetes mellitus (DM) has been reported in some epidemiologic and animal studies, but little research has evaluated the relationship between air pollution and diabetic coma. Diabetic coma is an acute complication of DM caused by diabetic ketoacidosis or hyperosmolar hyperglycemic state, which is characterized by extreme hyperglycemia accompanied by coma. We conducted a time-series study with a generalized additive model using a distributed-lag non-linear model to assess the association between ambient air pollution (particulate matter less than $10{\mu}m$ in aerodynamic diameter, nitrogen dioxide [$NO_2$], sulfur dioxide, carbon monoxide, and ozone) and emergency department (ED) visits for DM with coma in Seoul, Korea from 2005 to 2009. Methods: The ED data and medical records from the 3 years previous to each diabetic coma event were obtained from the Health Insurance Review and Assessment Service to examine the relationship with air pollutants. Results: Overall, the adjusted relative risks (RRs) for an interquartile range (IQR) increment of $NO_2$ was statistically significant at lag 1 (RR, 1.125; 95% confidence interval [CI], 1.039 to 1.219) in a single-lag model and both lag 0-1 (RR, 1.120; 95% CI, 1.028 to 1.219) and lag 0-3 (RR, 1.092; 95% CI, 1.005 to 1.186) in a cumulative-lag model. In a subgroup analysis, significant positive RRs were found for females for per-IQR increments of $NO_2$ at cumulative lag 0-3 (RR, 1.149; 95% CI, 1.022 to 1.291). Conclusions: The results of our study suggest that ambient air pollution, specifically $NO_2$, is associated with ED visits for diabetic coma.

Root proximity of the anchoring miniscrews of orthodontic miniplates in the mandibular incisal area: Cone-beam computed tomographic analysis

  • Jeong, Do-Min;Oh, Song Hee;Choo, HyeRan;Choi, Yong-Suk;Kim, Seong-Hun;Lee, Jin-Suk;Hwang, Eui-Hwan
    • The korean journal of orthodontics
    • /
    • v.51 no.4
    • /
    • pp.231-240
    • /
    • 2021
  • Objective: This outcome analysis study evaluated the actual positions of the orthodontic miniplate and miniplate anchoring screws (MPASs) and the risk factors affecting adjacent anatomic structures after miniplate placement in the mandibular incisal area. Methods: Cone-beam computed tomographic images of 97 orthodontic miniplates and their 194 MPASs (diameter, 1.5 mm; length, 4 mm) in patients whose miniplates provided sufficient clinical stability for orthodontic treatment were retrospectively reviewed. For evaluating the actual positions of the miniplates and analyzing the risk factors, including the effects on adjacent roots, MPAS placement height (PH), placement depth (PD), plate angle (PA), mental fossa angle (MA), and root proximity were assessed using the paired t-test, analysis of variance, and generalized linear model and regression analyses. Results: The mean PDs of MPASs at positions 1 (P1) and 2 (P2) were 2.01 mm and 2.23 mm, respectively. PA was significantly higher in the Class III malocclusion group than in the other groups. PH was positively correlated with MA and PD at P1. Of the 97 MPASs at P1, 49 were in the no-root area and 48 in the dentulous area; moreover, 19 showed a degree of root contact (19.6%) without root perforation. All MPASs at P2 were in the no-root area. Conclusions: Positioning the miniplate head approximately 1 mm lower than the mucogingival junction is highly likely to provide sufficient PH for the P1-MPASs to be placed in the no-root area.

Effect of polishing methods on color change by water absorption in several composite resins (여러 복합레진에서 수분 흡수에 의한 색변화에 연마가 미치는 영향)

  • Kim, Hye Jin;Kim, Mi-yeon;Song, Byung-chul;Kim, Sun-ho;Kim, Jeong-hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Purpose: The aim of this study was to evaluate the influence of polishing methods on the color stability of composite resins. Materials and Methods: Two bulk-fill and four conventional resin composites were filled in cylindrical molds (6 mm diameter, 4 mm height) and light-cured. The specimens were stored in $34^{\circ}C$ distilled water for 24 h. Spectrophotometer was used to determine the color value according to the CIE $L^*a^*b^*$ color space. Each group was divided into three groups according to polishing methods (n = 5). Group 1 was control group (Mylar strip group), group 2 was polished with PoGo, and group 3 was polished with Sof-Lex Spiral wheels. Color evaluation was performed weekly for 4 weeks after immersion in $34^{\circ}C$ distilled water. The results were analyzed by generalized least squares method (P < 0.05). Results: Generalized least squares analysis revealed that Sof-Lex Spiral wheels group showed the significantly lower ${\Delta}E$ values compared to PoGo and control group (P < 0.05). The ${\Delta}E$ values of polished group showed the significantly lower than the ${\Delta}E$ values of unpolished group (P < 0.05). Regarding color changes of composite resins, there was no significant difference between the ${\Delta}E$ values of Filtek Z250 and Filtek Z350 XT Universal restorative in all time intervals (P < 0.05). Tetric N-Ceram Bulk Fill showed the significantly lower ${\Delta}E$ values compared to other composite resins in 1, 2, 3 weeks (P < 0.05). Conclusion: Within the limitations of this study, polishing methods influence the color stabilities of composite resins. The group polished with Sof-Lex Spiral Wheels showed more resistance to discoloration than group polished with PoGo.