• Title/Summary/Keyword: general corrosion model

Search Result 19, Processing Time 0.028 seconds

Reliability Assessment of Reinforced Concrete Beams Strengthened by CFRP Laminates (CFRP 적층판으로 보강된 철근콘크리트보의 신뢰성평가)

  • 조효남;최영민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.160-166
    • /
    • 1994
  • In general, the problems of strengthening and repairing of deteriorated or damaged reinforced concrete members are usually worked out in situ by externally bounding steel plates using epoxy resins, which has been recognized to be one of effective and convenient methods. But the disadvantages of strengthening/repairing concrete members with externally bonded steel plates include ; (a) deterioration of the bond at the steel-concrete interface caused by the corrosion of steel ; (b) difficulty in manipulating the plate at the construction site ; (c) improper formation of joints, due to the limited delivery lengths of the steel plates ; and etc. Therefore these difficulties eventually have led to the concept of replacing the steel plates by fiber-reinforced composite sheets which are characterized by their light weight, extremely high stiffness, excellent fatigue properties, and outstanding corrosion resistance. In the paper, for the reliability assessment of reinforced concrete beams externally strengthened by carbon fiber plastic(CFRP) laminates, an attempt is made to suggest a limit state model based on the strain compatibility method and the concept of fracture mechanics. And the reliability of the proposed models is evaluated by using the AFOSM method. The load carrying capacity of the deteriorated and/or damaged RC beams is considerably increased. Thus, it may be stated that the post-strengthening of concrete beams with externally bonded CFRP materials may be one of very effective way of increasing the load carrying capacity and stiffeness characteristics of existing structures.

  • PDF

Analysis of Heat Transfer Performance of Oxi-nitriding Surface during Droplet Evaporation (산질화 표면에서의 액적 증발 열전달 성능 분석)

  • Kim, Dae Yun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.203-208
    • /
    • 2019
  • In general, the oxi-nitriding method is well known as such a surface treatment way for substantial enhancement in corrosion resistance, even comparable to that of titanium. However, there are still lacks of information on thermal performance of the oxi-nitriding surface being of additional compound layers on the base substrate. Above all, the quantitative measurement of its thermal performance still was not evaluated yet. Thus, the present study experimentally measures the thermal resistance of the oxi-nitriding surface during droplet evaporation and then estimates heat transfer performance with the use of the onedimensional heat transfer model in vertical direction. From the experimental results, it is found that the total evaporation time slightly increased with the thermal resistance caused by the oxi-nitriding layer, showing a maximum difference of approximately 20% with that of the bare surface. Although the heat transfer performance of oxi-nitriding surface became slightly lower than that of the bare surface, the oxi-nitriding surface exhibits much better heat transfer performance compared to titanium.

Characteristics Comparison of Prepared Films According to Influence of Adsorption Inhibitor in the Condition of Deposition (PVD증착용 흡착인히비터의 영향에 따른 제작막의 특성 비교)

  • 이찬식;윤용섭;권식철;김기준;이명훈
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.67-67
    • /
    • 2001
  • The structure zone model has been used to provide an overview of the relationship between the microstructure of the films deposited by PVD and the most prominent deposition condition.s. B.AMovchan and AV.Demchishin have proposed it firstls such model. They concluded that the general features of the resulting structures could be correlated into three zones depending on $T/T_m$. Here T m is the melting point of the coating material and T is the substrate temperature in kelvines. Zone 1 ($T/Tm_) is dominated by tapered macrograins with domed tops, zone 2 ($O.3) by columnar grains with denser boundaries and zone 3 ($T/T_m>O.5$) by equiaxed grains formed by recrystallization. J.AThomton has extended this model to include the effect of the sputtering gas pressure and found a fourth zone termed zone T(transition zone) consisting of a dense array of poorly defined fibrous grains. R.Messier found that the zone I-T boundary (fourth zone of Thorton) varies in a fashion similar to the film bias potential as a function of gas pressure. However, there has not nearly enough model for explaining the change in morphology with crystal orientation of the films. The structure zone model only provide an information about the morphology of the deposited film. In general, the nucleation and growth mechanism for granular and fine structure of the deposited films are very complex in an PVD technique because the morphology and orientation depend not only on the substrate temperature but also on the energy of deposition of the atoms or ions, the kinetic mechanism between metal atoms and argon or nitrogen gas, and even on the presence of impurities. In order to clarify these relationship, AI and Mg thin films were prepared on SPCC steel substrates by PVD techniques. The influence of gas pressures and bias voltages on their crystal orientation and morphology of the prepared films were investigated by SEM and XRD, respectively. And the effect of crystal orientation and morphology of the prepared films on corrosion resistance was estimated by measuring polarization curves in 3% NaCI solution.

  • PDF

Integrity Evaluation of Thinned Elbow Based on TES Plastic Load (TES 소성하중 기준의 감육엘보 기기건전성 평가)

  • Lee, Sung-Ho;Park, Chi-Yong;Lee, Jeong-Keun;Park, Jai-Hak
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.281-286
    • /
    • 2008
  • Wall thinning defect due to flow accelerated corrosion is one of major aging phenomena in most power plant industries, and it results in reducing load carrying capacity of the piping systems. A failure testing system was set up for real scale elbows containing various simulated wall thinning defects, and monotonic in-plane bending tests were performed under internal pressure to find out the failure behavior of thinned elbows. Various finite element models were generated and analysed to figure out and simulate the behavior for other thinning shapes and loading conditions. This paper presents the decreasing trends of load carrying capacity according to the thinning dimensions which were revealed from the investigation of finite element analysis results. A mechanical integrity evaluation model for thinned elbows was proposed, also. This model can be used to calculate the TES plastic load of thinned elbows for general internal pressure, thinning location, and in-plane bending direction.

  • PDF

Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates

  • Song, Yuchen;Uy, Brian;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.143-162
    • /
    • 2019
  • A number of desirable characteristics concerning excellent durability, aesthetics, recyclability, high ductility and fire resistance have made stainless steel a preferred option in engineering practice. However, the relatively high initial cost has greatly restricted the application of stainless steel as a major structural material in general construction. This drawback can be partially overcome by introducing composite stainless steel-concrete structures, which provides a cost-efficient and sustainable solution for future stainless steel construction. This paper presents a preliminary numerical study on stainless steel-concrete composite beam-to-column joints with bolted flush endplates. In order to ensure a consistent corrosion resistance within the whole structural system, all structural steel components were designed with austenitic stainless steel, including beams, columns, endplates, bolts, reinforcing bars and shear connectors. A finite element model was developed using ABAQUS software for composite beam-to-column joints under monotonic and symmetric hogging moments, while validation was performed based on independent test results. A parametric study was subsequently conducted to investigate the effects of several critical factors on the behaviour of composite stainless steel joints. Finally, comparisons were made between the numerical results and the predictions by current design codes regarding the plastic moment capacity and the rotational stiffness of the joints. It was concluded that the present codes of practice generally overestimate the rotational stiffness and underestimate the plastic moment resistance of stainless steel-concrete composite joints.

Prototyping-based Design Process Integrated with Digital-Twin: A Fundamental Study (디지털 트윈 개념을 적용한 프로토타이핑 기반 디자인 프로세스: 기초연구)

  • Kim, Jin-Wooung;Kim, Sung-Ah
    • Journal of KIBIM
    • /
    • v.9 no.4
    • /
    • pp.51-61
    • /
    • 2019
  • In the general manufacturing sector, prototyping used to reduce the risks that can arise with new conceptual products. However, in AEC area, it does not mass-produce a building, so the prototype itself becomes a building. Therefore, it is challenging to have prototyping of the same scale as the real thing, and the prototyping process in architecture is very inefficient. The prototyping process in the design stage typically assumes making a scaled model, partial model, or digital model. However, it is difficult for these models to correspond to the actual building and the environment of time and space such as scale, material, environment, load, physical properties and deformation, corrosion, etc., unlike the actual building. When using the digital twin concept in the prototyping process, it is possible to measure performance from the design stage to the operation stage. The digital twin was found by a method for monitoring based on physical twins and real-time linkage in the operation stage. Therefore, if the digital twin concept is applied at the design stage, it is possible to predict performance using not only current performance but also history information using real-time information. In order to apply the digital twin concept to the prototyping design process, we analyze the theoretical considerations and the prototyping design process of the digital twin, analyze the cases and research results where the prototyping design was applied, Provide an applied prototyping design process. The proposed process is tested through a pilot project and analyzed for potential use.

The Development of an Environmental-Friendly Foam Extinguisher Using a Natural Surfactant (천연계면활성제를 이용한 친환경적 포소화약제 개발)

  • Kim, Jeong-Hun;Lee, Jung-Yun;Kim, Hong;Kim, Eung-Sik;Lee, Myoung-Bo;Kim, Dong-Hyun;Jung, Ki-Chang
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.69-73
    • /
    • 2007
  • In this research, an environmental-friendly foam extinguisher was newly developed using a natural surfactant as its composition. Two criteria were applied to verify its extinguishing performance and environmental attraction. One is unit 2 model by "Standards of Model Approval and Inspection Technology for Portable Fire Extinguishers" presented in Korea Fire Equipment Inspection Corporation. The other is Terrestrial Plants, Growth Test and Fish, Acute Toxicity Test presented in Korea Institute of Toxicology(Korea Research Institute of Chemical Technology). Test results showed that the extinguishing performance was 5 unit of general fire Class A, the $LC_{50}$ by germination was 75(g/kg) and the $EC_{50}$ by growth was 62(g/kg) through Terrestrial Plants, Growth Test, and also the toxicity was 6658 ppm in Fish, Acute Toxicity Test. The numerical values were highly evaluated than other fire extinguishing agents being commercialized in domestic. The results also showed suitably in basic physical properties and anti-corrosion properties for making use of fire extinguishing agent.

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

Effect of Micro-Cracks on Chloride Ions Penetration of Concrete: Phonomenological Model (미세균열이 콘크리트의 염소이온 침투에 미치는 영향: 현상학적 모델)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Over the past few decades, considerable numbers of studies on the durability of concrete have been carried out extensively. A lot of improvements have been achieved especially in both measuring techniques as well as modeling of ionic flows. However, the majority of these researches have been performed on sound uncracked concrete, although most of in-situ concrete structures have more or less micro-cracks. It is only recent approach that the attention has shifted towards the influence of cracks and crack width on the penetration of chloride into concrete. The penetration of chlorides into concrete through the cracks can make a significant harmful effect on reinforcement corrosion. On the other hand, a general acceptable crack width of 0.3 mm has been recognized for keeping the serviceability of concrete structures in accordance with a lot of codes. However, there seems to be rare established description to explain the critical crack width in terms of the durability of concrete. To make a bad situation worse, there is little agreement on critical crack width among a few of literatures for this issue. Critical crack width is still controversial problem. Nevertheless, since the critical crack width is important key for healthy assessment of concrete structures exposed to marine environment, it should be established. The objective of this study is to define a critical crack width. The critical crack width in this study is designed for a threshold crack width, which contributes to the first variation of chloride diffusion coefficient in responsive to the existence of cracks. A simple solution is formulated to realize the quantifiable parameter, chloride diffusion coefficient for only cracked zone excluding sound concrete. From the examination on the trend of chloride diffusion coefficient of only cracked zone for various crack widths, a critical crack width is founded out.