• 제목/요약/키워드: gene transcription

검색결과 2,119건 처리시간 0.04초

Cadmium-Induced Gene Expression is Regulated by MTF-1, a Key Metal- Responsive Transcription Factor

  • Gupta, Ronojoy-Sen;Ahnn, Joohong
    • Animal cells and systems
    • /
    • 제7권3호
    • /
    • pp.173-186
    • /
    • 2003
  • The transition metal cadmium is a serious occupational and environmental toxin. To inhibit cadmium-induced damage, cells respond by increasing the expression of genes that encode stress-responsive proteins. The metal-regulatory transcription factor 1 (MTF-1) is a key regulator of heavy-metal induced transcription of metallothionein-I and II and other genes in mammals and other metazoans. Transcriptional activation of genes by MTF-1 is mediated through binding to metal-responsive elements in the target gene promoters. Phosphorylation of MTF-1 plays a critical role in the cadmium-inducible transcriptional activation of metallothionein and other responses. Studies using inhibitors indicate that multiple kinases and signal transduction cascades, including those mediated by protein kinase C, tyrosine kinase and casein kinase II, are essential for cadmium-mediated transcriptional activation. In addition, calcium signaling is also involved in regulating metal-activated transcription. In several species, cadmium induces heat shock genes. Recently much progress has been made in elucidating the cellular machinery that regulates this metal-inducible gene expression. This review summarizes these recent advances in understanding the role of some known cadmium-responsive genes and the molecular mechanisms that activate metal-responsive transcription factor, MTF-1.

Transcription and Export of RNase MRP RNA in Xenopus Iaevis Oocyetes

  • 정선주
    • Animal cells and systems
    • /
    • 제1권2호
    • /
    • pp.363-370
    • /
    • 1997
  • RNase MRP is a ribonucleoprotein complex with a site-specific endonuclease activity. Its original substrate for cleavage is the small mitochondrial RNA near the mitochondrial DNA replication origin, thus it was proposed to generate the primer for mtDNA replication. Recently, it has been shown to have another substrate in the nucleus, such as pre-S.8S ribosomal RNA in nucleolus. The gene for the RNA component of RNase MRP (MRP RNA) was found to be encoded by the nucleus genome, suggesting an interesting intracellular trafficking of MRP RNA to both mitochondria and nucleolus after transcription in nucleus. In this study, genomic DNA encoding MRP RNA was microinjected into the nucleus of Xenopus oocytes, to analyze promoter regions involved in the transcription. It showed that the proximal sequence element and TATA box are important for basal level transcription; octamer motif and Sp1 binding sites are for elevated level transcription. Most of Xenopus MRP RNA was exported out to the cytoplasm following transcription in the nucleus. Utilizing various hybrid constructs, export of MRP RNA was found to be regulated by the promoter and the 5' half of the coding region of the gene. Interestingly, the transcription in nucleus seems to be coupled to the export of MRP RNA to cytoplasm. Intracellular transport of injected MRP RNA can be easily visualized by whole-mount in situ hybridization following microinjection; it also shows possible intra-nuclear sites for transcription and export of MRP RNA.

  • PDF

Notch Signal Transduction Induces a Novel Profile of Kaposi's Sarcoma-Associated Herpesvirus Gene Expression

  • Chang Hee-Soon
    • Journal of Microbiology
    • /
    • 제44권2호
    • /
    • pp.217-225
    • /
    • 2006
  • Kaposi's sarcoma-associated herpesvirus (KSHV) RTA transcription factor is recruited to its responsive elements through interaction with RBP-Jk that is a downstream transcription factor of the Notch signaling pathway that is important in development and cell fate determination. This suggests that KSHV RTA mimics cellular Notch signal transduction to activate viral lytic gene expression. Here, I demonstrated that unlike other B lymphoma cells, KSHV -infected primary effusion lymphoma BCBL1 cells displayed the constitutive activation of ligand-mediated Notch signal transduction, evidenced by the Jagged ligand expression and the complete proteolytic process of Notch receptor I. In order to investigate the effect of Notch signal transduction on KSHV gene expression, human Notch intracellular (hNIC) domain that constitutively activates RBP-Jk transcription factor activity was expressed in BCBL1 cells, TRExBCBL1-hNIC, in a tetracycline inducible manner. Gene expression profiling showed that like RTA, hNIC robustly induced expression of a number of viral genes including KS immune modulatory gene resulting in downregulation of MHC I and CD54 surface expression. Finally, the genetic analysis of KSHV genome demonstrated that the hNIC-mediated expression of KS during viral latency consequently conferred the downregulation of MHC I and CD54 surface expression. These results indicate that cellular. Notch signal transduction provides a novel expression profiling of KSHV immune deregulatory gene that consequently confers the escape of host immune surveillance during viral latency.

갑상선자극 분비 호르몬에 의해 유도되는 c-fos 유전자 발현에서 Ca2+의 역할에 관한 연구 (Role of Calcium Influx in mediating the TRH-induced c-fos Gene Expression)

  • Seung Kirl Ahn;Don
    • 한국동물학회지
    • /
    • 제36권4호
    • /
    • pp.487-495
    • /
    • 1993
  • TRH (Thvrotropin-Releasing Hormone) known to regulate the transcription of the TSH (Thyroid-Stimulating Hormones gene in pituitary cells, but little is understood about the mechanism(sl involved. re present study was attempted to elucidate the role of Ca2+ movement through the voltage-gated channels in the regulation of TSH gene transcription. The c-fos is one of immediate early genes and used as model system for the investigation of signaling pathwavs involved in various stimuli. The changes of c-fos mRNA levels were determined after treatment of various agents using Northern and slot hybridization analysis. The c-fos mRNA was rapidly and transiently induced by TRH (about 3-fold) in GH3 cells and this induction was repressed by calcium chelating agent (EGTA), calcium channel blocker (verapamil) anti protein kinase C inhibitor (aminoacridine). The abilities of forskolin (adenvlate cvclase activators, PMA (protein kinase C activator), and A23187 (calcium ionophore) to affect c-ios gene transcription, either alone or in combination with TRH were tested in the same cells. All of them significantly increased the level of c-fos mRUA. However, no additive relationship was observed in all combined treatments except forskolin. These results suggest that TRH action on the c-fos gene activation is mediated by calcium influx as well as through protein kinase C.

  • PDF

유전자 알고리즘을 이용한 Promoter 예측 (Promoter Prediction using Genetic Algorithm)

  • 오민경;김창훈;김기봉;공은배;김승목
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.12-14
    • /
    • 1999
  • Promoter는 transcript start site 앞부분에 위치하여 RNA polymerase가 높은 친화성을 보이며 바인당하는 DNA상의 특별한 부위로서 여기서부터 DNA transcription이 시작된다. function이나 tissue-specific gene들의 그룹별로 그 promoter들의 특이한 패턴들의 조합을 발견함으로써 Specific한 transcription을 조절하는 것으로 알려져 있어 promoter로 인한 그 gene의 정보를 어느 정도 알 수가 있다. 사람의 housekeeping gene promoter들을 EPD(eukaryotic promoter database)와 EMBL nucleic acid sequence database로부터 수집하여 이것들 간에 의미 있게 나타나는 모든 패턴들을 optimization algorithm으로 알려진 genetic algorithm을 이용해서 찾아보았다.

  • PDF

Role of MAPK Signaling Pathways in Regulating the Hydrophobin Cryparin in the Chestnut Blight Fungus Cryphonectria parasitica

  • So, Kum-Kang;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • 제45권4호
    • /
    • pp.362-369
    • /
    • 2017
  • We assessed the regulation of cryparin, a class II hydrophobin, using three representative mitogen-activated protein kinase (MAPK) pathways in Cryphonectria parasitica. Mutation of the CpSlt2 gene, an ortholog of yeast SLT2 in the cell wall integrity (CWI) pathway, resulted in a dramatic decrease in cryparin production. Similarly, a mutant of the CpBck1 gene, a MAP kinase kinase kinase gene in the CWI pathway, showed decreased cryparin production. Additionally, mutation of the cpmk1 gene, an ortholog of yeast HOG1, showed decreased cryparin production. However, mutation of the cpmk2 gene, an ortholog of yeast Kss1/Fus3, showed increased cryparin production. The easy-wet phenotype and accumulation of the cryparin transcript in corresponding mutants were consistent with the cryparin production results. In silico analysis of the promoter region of the cryparin gene revealed the presence of binding motifs related to downstream transcription factors of CWI, HOG1, and pheromone responsive pathways including MADS-box- and Ste12-binding domains. Real-time reverse transcriptase PCR analyses indicated that both CpRlm1, an ortholog of yeast RLM1 in the CWI pathway, and cpst12, an ortholog of yeast STE12 in the mating pathway, showed significantly reduced transcription levels in the mutant strains showing lower cryparin production in C. prasitica. However, the transcription of CpMcm1, an ortholog of yeast MCM1, did not correlate with that of the mutant strains showing downregulation of cryparin. These results indicate that three representative MAPK pathways played a role in regulating cryparin production. However, regulation varied depending on the MAPK pathways: the CWI and HOG1 pathways were stimulatory, whereas the pheromone-responsive MAPK was repressive.

Telomerase reverse transcriptase in the regulation of gene expression

  • Zhou, Junzhi;Ding, Deqiang;Wang, Miao;Cong, Yu-Sheng
    • BMB Reports
    • /
    • 제47권1호
    • /
    • pp.8-14
    • /
    • 2014
  • Telomerase plays a pivotal role in the pathology of aging and cancer by maintaining genome integrity, controlling cell proliferation, and regulating tissue homeostasis. Telomerase is essentially composed of an RNA component, Telomerase RNA or TERC, which serves as a template for telomeric DNA synthesis, and a catalytic subunit, telomerase reverse transcriptase (TERT). The canonical function of TERT is the synthesis of telomeric DNA repeats, and the maintenance of telomere length. However, accumulating evidence indicates that TERT may also have some fundamental functions that are independent of its enzymatic activity. Among these telomere-independent activities of hTERT, the role of hTERT in gene transcription has been investigated in detail. Transcriptional regulation is a fundamental process in biological systems. Several studies have shown a direct involvement of hTERT in gene transcription. This mini-review will focus on the role of hTERT in gene transcription regulation, and discuss its possible mechanisms.

Molecular Mechanisms Governing IL-24 Gene Expression

  • Sahoo, Anupama;Im, Sin-Hyeog
    • IMMUNE NETWORK
    • /
    • 제12권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Interleukin-24 (IL-24) belongs to the IL-10 family of cytokines and is well known for its tumor suppressor activity. This cytokine is released by both immune and nonimmune cells and acts on non-hematopoietic tissues such as skin, lung and reproductive tissues. Apart from its ubiquitous tumor suppressor function, IL-24 is also known to be involved in the immunopathology of autoimmune diseases like psoriasis and rheumatoid arthritis. Although the cellular sources and functions of IL-24 are being increasingly investigated, the molecular mechanisms of IL-24 gene expression at the levels of signal transduction, epigenetics and transcription factor binding are still unclear. Understanding the specific molecular events that regulate the production of IL-24 will help to answer the remaining questions that are important for the design of new strategies of immune intervention involving IL-24. Herein, we briefly review the signaling pathways and transcription factors that facilitate, induce, or repress production of this cytokine along with the cellular sources and functions of IL-24.

Molecular Mechanisms of Regulation of Human Cytochrome P4501A2 Gene Expression

  • Chung, In-Jae
    • Natural Product Sciences
    • /
    • 제10권5호
    • /
    • pp.197-206
    • /
    • 2004
  • Cytochrome P4501A2 (CYP1A2) is responsible for the metabolic activation of a number of aromatic amines and amides to mutagenic and carcinogenic moieties. Considerable variations in the level of CYP1A2 expression in humans have been reported. Thus, the level of human CYP1A2 may determine an individuals susceptibility to these chemicals. Given its importance, the molecular mechanisms of CYP1A2 regulation have been studied by many groups. Direct interactions between transcription factors with the promoters of the gene represent one of the primary means by which the expression of CYP1A2 is controlled. In this review, several important cis elements, transcription factors and the effects of deacetylation/methylation of promoter regions that play an important role in the induction by PAHs as well as constitutive expression of human CYP1A2 are discussed.

Babesia bovis rap-1 및 B equi ema-1 intergenic 뉴클레오타이드에서 프로모터로 추정되는 위치 분석 (Analysis of putative promoter sites in Babesia bovis rap-l and B equi ema-l intergenic nucleotides)

  • 곽동미
    • 한국동물위생학회지
    • /
    • 제27권1호
    • /
    • pp.95-101
    • /
    • 2004
  • Babesia bovis rap-1 and B equi ema-1 intergenic(IG) nucleotides were analyzed and compared for identifying putative promoter sites using computer programs. The reason to initiate this research was to determine if IG nucleotides of Babesia genes that are predicted to be involved in erythrocyte invasion have functions regulating gene transcription and translation, which can be applied to functional gene knockout. Four IG sequences used included BbIG5(B bovis rap-1 5' IG), BblG3(B bovis rap-1 3' IG), BeIG5(B equi ema-1 5' IG) and BeIG3(B equi ema-1 3' IG). BbIG5 contained a putative promoter at nucleotide 197-246 with a predicted TATA-box and a transcription start site. BbIG3 had a putative promoter at nucleotide 270-320 with two predicted TATA-boxes and a transcription start site. BeIG3 had a putative promoter at nucleotide 155-205 with a predicted TATA-box and a transcription start site. Putative promoter sites in these three sequences mentioned above were identified with score cutoff 0.8, which means detection of about 40% recognized promoters with 0.1-0.4% false positives. In contrast, BeIG5 had a putative promoter at nucleotide 163-213 with score cutoff 0.8, but neither TATA-box nor transcription start site were recognized. However, BeIG5 had a putative promoter at nucleotide 388-438 with a predicted TATA-box and a transcription start site when score cutoff was decreased to 0.18, which means detection of about 70% recognized promoters with 2.2-5.3% false positives. These sequences with putative promoters can be tested if they have functions regulating gene transcription and translation.