• Title/Summary/Keyword: gene silencing

Search Result 262, Processing Time 0.032 seconds

The Heterochromatin Protein 1 (HP1) Family: Put Away a Bias toward HP1

  • Kwon, So Hee;Workman, Jerry L.
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.217-227
    • /
    • 2008
  • Heterochromatin protein 1 (HP1) was first described in Drosophila melanogaster as a heterochromatin associated protein with dose-dependent effect on gene silencing. The HP1 family is evolutionarily highly conserved and there are multiple members within the same species. The multi-functionality of HP1 reflects its ability to interact with diverse nuclear proteins, ranging from histones and transcriptional co-repressors to cohesion and DNA replication factors. As its name suggests, HP1 is well-known as a silencing protein found at pericentromeres and telomeres. In contrast to previous views that heterochromatin is transcriptionally inactive; noncoding RNAs transcribed from heterochromatic DNA repeats regulates the assembly and function of heterochromatin ranging from fission yeast to animals. Moreover, more recent progress has shed light on the paradoxical properties of HP1 in the nucleus and has revealed, unexpectedly, its existence in the euchromatin. Therefore, HP1 proteins might participate in both transcription repression in heterochromatin and euchromatin.

A Novel Type of Non-coding RNA, nc886, Implicated in Tumor Sensing and Suppression

  • Lee, Yong Sun
    • Genomics & Informatics
    • /
    • v.13 no.2
    • /
    • pp.26-30
    • /
    • 2015
  • nc886 (=vtRNA2-1, pre-miR-886, or CBL3) is a newly identified non-coding RNA (ncRNA) that represses the activity of protein kinase R (PKR). nc886 is transcribed by RNA polymerase III (Pol III) and is intriguingly the first case of a Pol III gene whose expression is silenced by CpG DNA hypermethylation in several types of cancer. PKR is a sensor protein that recognizes evading viruses and induces apoptosis to eliminate infected cells. Like viral infection, nc886 silencing activates PKR and induces apoptosis. Thus, the significance of the nc886:PKR pathway in cancer is to sense and eliminate pre-malignant cells, which is analogous to PKR's role in cellular innate immunity. Beyond this tumor sensing role, nc886 plays a putative tumor suppressor role as supported by experimental evidence. Collectively, nc886 provides a novel example how epigenetic silencing of a ncRNA contributes to tumorigenesis by controlling the activity of its protein ligand.

The coat protein of Turnip crinkle virus is required a full-length to maintain suppressing activity to RNA silencing but no relation with eliciting resistance by N-terminal region in Arabidopsis.

  • Park, Chang-Won;Feng Qu;Tao Ren;T. Jack Morris
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.76.1-76
    • /
    • 2003
  • The coat protein (CP) of Turnip crinkle virus (TCV) is organized into 3 distinct domains, R domain (RNA-binding) connected by an arm, 5 domain and P domain. We have previously shown that the CP of TCV strongly suppresses RNA silencing, and have mapped N-terminal R domain of which is also the elicitor of resistance response in the Arabidopsis ecotype Di-17 carrying the HRT resistance gene. In order to map the region in the TCV CP that is responsible for silencing suppression, a series of CP mutants were constructed, transformed into Agrobacterium, coinfiltrated either with HC-Pro (the helper component proteinase of tobacco etch potyvirus) known as a suppressor of PTGS or GFP constructs into leaves of Nicotiana benthmiana expressing GFP transgenically. In the presence of HC-Pro, all CP mutants were well protected, accumulating mutant CP mRNAs and their proteins even 5 days post-infiltration (DPI). In the presence of GFP, some mutant constructs which showed the accumulation of CP mutants and GFP mRNAs at early stage but eventually degraded at 5 DPI. Only a mutant which carrying 4 amino acid deletion of R domain was tolerable to maintain suppressing activity, suggesting that the suppressing activity is not directly related with the eliciting activity. A transient assay also revealed that the mutants synthesized their proteins, suggesting that a full length of CP sequences and its intact structure are required to stabilize CP, which suppresses the RNA silencing.

  • PDF

UNDERSTANDING OF EPIGENETICS AND DNA METHYLATION (후생유전학 (Epigenetics)과 DNA methylation의 이해)

  • Oh, Jung-Hwan;Kwon, Young-Dae;Yoon, Byung-Wook;Choi, Byung-Jun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.3
    • /
    • pp.302-309
    • /
    • 2008
  • Epigenetic is usually referring to heritable traits that do not involve changes to the underlying DNA sequence. DNA methylation is known to serve as cellular memory. and is one of the most important mechanism of epigenetic. DNA methylation is a covalent modification in which the target molecules for methylation in mammalian DNA are cytosine bases in CpG dinucleotides. The 5' position of cytosine is methylated in a reaction catalyzed by DNA methyltransferases; DNMTl, DNMT3a, and DNMT3b. There are two different regions in the context of DNA methylation: CpG poor regions and CpG islands. The intergenic and the intronic region is considered to be CpG poor, and CpG islands are discrete CpG-rich regions which are often found in promoter regions. Normally, CpG poor regions are usually methylated whereas CpG islands are generally hypomethylated. DNA methylation is involved in various biological processes such as tissue-specific gene expression, genomic imprinting, and X chromosome inactivation. In general. cancer cells are characterized by global genomic hypomethylation and focal hypermethylation of CpG islands, which are generally unmethylated in normal cells. Gene silencing by CpG hypermethylation at the promotors of tumor suppressor genes is probably the most common mechanism of tumor suppressor inactivation in cancer.

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.20-20
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.97-97
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF

Characterization of a Tomato (Lycopersicon esculentum Mill.) Ripening-associated Membrane Protein (TRAMP) Gene Expression and Flavour Volatile Changes in TRAMP Transgenic Plants

  • Kim Seog-Hyung;Ji Hee-Chung;Lim Ki-Byung
    • Journal of Plant Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.87-95
    • /
    • 2005
  • The tomato ripening associated membrane protein (TRAMP) (Fray et al., 1994) is a member of the major intrinsic protein (MIP) family, defined as channels facilitating the passage of water and small solutes through membranes. During normal fruit ripening the TRAMP mRNA levels were increased whereas the expression levels of TRAMP in low ethylene ACO1-sense suppressed lines, Nr and rin fruits, were lower than at the breaker stage of wild type fruit. TRAMP mRNA is inhibited by $LaCl_3$, which is an inhibitor of $Ca^{2+}$-stimulated responses, treatment but drought condition did not affect TRAMP expression. The levels of TRAMP mRNA transcripts were substantially higher in the dark treated seedlings and fruits. These suggest that TRAMP function as a water channel may be doubted because of several reasons; no water content was changed during ripening in wild type, antisense and overexpression lines, TRAMP expression under light condition was lower than dark condition and TRAMP expression was not changed in drought condition. Co-suppression plant, 3588 was one of sense suppression lines, which contain CaMV 35S promoter and sense pNY507 cDNA, produced small antisense RNA, approximately 21-25 nucleotides in length, mediated post-transcriptional gene silencing. Therefore, TRAMP expression was inhibited by small antisense and multiple copies might induce gene silencing without any production of double strand RNA. Total seven selected volatile productions, isobutylthiazole, 6-methyl-5-hepten-2-one, hexanal, hexenal methylbutanal, hexenol, and methylbutanol, were highly reduced in sense line whereas total volatile production was increased in TRAMP antisense line. These results suggested TRAMP might change volatile related compounds.

Aberrant Methylation of the 1p36 Tumor Suppressor Gene RIZ1 in Renal Cell Carcinoma

  • Ge, Peng;Yu, Xi;Wang, Zi-Cheng;Lin, Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.4071-4075
    • /
    • 2015
  • Background: Retinoblastoma protein-interacting zinc finger gene 1(RIZ1) functions as a tumor suppressor. Hypermethylation-mediated RIZ1 silencing has been reported in several cancers, but not in renal cell carcinoma (RCC) yet. Materials and Methods: We examined the RIZ1 expression and methylation in a panel of RCC cell lines and 50 primary tumors using semiquantitative/quantitative polymerase chain reaction (PCR), methylation specific PCR, and bisulfite sequencing genomic. We also explored the relationship between methylation status of RIZ1 and clinicopathological features in RCC patients. Results: RIZ1 expression was down-regulated or lost in OS-RC-2, 769-P, Caki-1, 786-O and A498 RCC cell lines. Restored expression of RIZ1 was detected after addition of 5-aza-2'-deoxycytidine with/without trichostatin A, suggesting that DNA methylation directly mediates its silencing. The RIZ1 expression was significantly reduced in RCCs compared to adjacent non-malignant renal samples (P<0.001). Aberrant methylation was detected in 15 of 50 (30%) RCCs and in 2 of 28 (7%) adjacent non-malignant renal samples (P=0.02). No statistically significant correlation between methylated and unmethylated cases with regard to age, gender, pathological stage and grade was observed. Conclusions: RIZ1 expression is down-regulated in human RCC, and this down-regulation is associated with methylation. RIZ1 methylation may play a role in renal carcinogenesis.

BRD7 Promoter Hypermethylation as an Indicator of Well Differentiated Oral Squamous Cell Carcinomas

  • Balasubramanian, Anandh;Subramaniam, Ramkumar;Narayanan, Vivek;Annamalai, Thangavelu;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1615-1619
    • /
    • 2015
  • Background: Promoter hypermethylation mediated gene silencing of tumor suppressor genes is considered as most frequent mechanism than genetic aberrations such as mutations in the development of cancers. BRD7 is a single bromodomain containing protein that functions as a subunit of SWI/SNF chromatin-remodeling complex to regulate transcription. It also interacts with the well know tumor suppressor protein p53 to trans-activate genes involved in cell cycle arrest. Loss of expression of BRD7 has been observed in breast cancers and nasopharyngeal carcinomas due to promoter hypermethylation. However, the genetic status of BRD7 in oral squamous cell carcinomas (OSCCs) is not known, although OSCC is one of the most common among all reported cancers in the Indian population. Hence, in the present study we investigated OSCC samples to determine the occurrence of hypermethylation in the promoter region of BRD7 and understand its prevalence. Materials and Methods: Genomic DNA extracted from biopsy tissues of twenty three oral squamous cell carcinomas were digested with methylation sensitive HpaII type2 restriction enzyme that recognizes and cuts unmethylated CCGG motifs. The digested DNA samples were amplified with primers flanking the CCGG motifs in promoter region of BRD7 gene. The PCR amplified products were analyzed by agarose gel electrophoresis along with undigested amplification control. Results: Methylation sensitive enzyme technique identified methylation of BRD7 promoter region seventeen out of twenty three (74%) well differentiated oral squamous cell carcinoma samples. Conclusions: The identification of BRD7 promoter hypermethylation in 74% of well differentiated oral squamous cell carcinomas indicates that the methylation dependent silencing of BRD7 gene is a frequent event in carcinogenesis. To the best of our knowledge, the present study is the first to report the occurrence of BRD7and its high prevalence in oral squamous cell carcinomas.

Tazarotene-Induced Gene 1 Enhanced Cervical Cell Autophagy through Transmembrane Protein 192

  • Shyu, Rong-Yaun;Wang, Chun-Hua;Wu, Chang-Chieh;Chen, Mao-Liang;Lee, Ming-Cheng;Wang, Lu-Kai;Jiang, Shun-Yuan;Tsai, Fu-Ming
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.877-887
    • /
    • 2016
  • Tazarotene-induced gene 1 (TIG1) is a retinoic acid-inducible protein that is considered a putative tumor suppressor. The expression of TIG1 is decreased in malignant prostate carcinoma or poorly differentiated colorectal adenocarcinoma, but TIG1 is present in benign or well-differentiated tumors. Ectopic TIG1 expression led to suppression of growth in cancer cells. However, the function of TIG1 in cell differentiation is still unknown. Using a yeast two-hybrid system, we found that transmembrane protein 192 (TMEM192) interacted with TIG1. We also found that both TIG1A and TIG1B isoforms interacted and co-localized with TMEM192 in HtTA cervical cancer cells. The expression of TIG1 induced the expression of autophagy-related proteins, including Beclin-1 and LC-3B. The silencing of TMEM192 reduced the TIG1-mediated upregulation of autophagic activity. Furthermore, silencing of either TIG1 or TMEM192 led to alleviation of the upregulation of autophagy induced by all-trans retinoic acid. Our results demonstrate that the expression of TIG1 leads to cell autophagy through TMEM192. Our study also suggests that TIG1 and TMEM192 play an important role in the all-trans retinoic acid-mediated upregulation of autophagic activity.