• Title/Summary/Keyword: gene knock-out

Search Result 73, Processing Time 0.022 seconds

Genotoxicity and Anti-Oxidative Effectiveness Study of Functional Food Additive Containing Astaxanthin (Astaxanthin 함유 기능성 식품소재의 유전독성 및 항산화능 검사)

  • Kim, Jun-Sung;Park, Jin-Hong;Jin, Hua;Cho, Hyun-Sun;Hwang, Soon-Kyung;Nah, Woon-Seong;Kang, Hwan-Goo;An, Gil-Hwan;Cho, Myung-Haing
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.381-390
    • /
    • 2006
  • Astaxanthine is a pigment that belongs to the family of the xanthophylls, the oxygenated derivatives of carotenoids whose synthesis in plants derives from lycopene. Astaxanthine is also a carotenoid widely used in salmonid and crustacean aquaculture to provide the pink color characteristic of that. Recent study reported that astaxanthine has the role as a detoxicant against the free radicals. On our study, we estimated the genotoxicity in ICR mice and possibility as antioxidant reagents of mutant Phaffia rhodozyma strain over expressing the astaxanthine by gamma-lay and carophyll pink including astaxanthine in apoE knock out mice, respectively. In our study, we administered Phaffia rhodozyma (2 mg and 3 mg) and carophyll pink for 4 and 8 week. The clinical sign and mortality were not detected compared with control groups. In the mutant frequency of hprt gene and chromosome aberration in splenic cells, there was not detected abnormality. There was not critical change in hematological and serum biochemical test compared to control. In expression level of repair enzyme, increase of catalase were detected and increase of expression level of Nrf-2 was detected in Phaffia rhodozyma (3 mg) and carophyll pink in 8 week treated group. In GSH level, the group of treated with Phaffia rhodozyma (3 mg) showed the increase of the GSH. In conclusion, mutant Phaffia rhodozyma and caphyll pink may be applied to the effective food additives to reduce the free radical.

The Role of the Insulin-like Growth Factor System during the Periimplantation Period (착상기 Insulin-like Growth Factor System의 역할)

  • 이철영
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.229-246
    • /
    • 1997
  • Implantation is a most important biological process during pregnancy whereby conceptus establishes its survival as well as maintenance of pregnancy. During the periimplantation period, both uterine endometriurn and conceptus synthesize and secrete a host of growth factors and cytokines which mediate the actions of estrogen and /or progesterone and also exert their steroid-independent actions. Growth factors expressed by the materno-conceptal unit en masse have important roles in cell migration, stimulation or inhibition of cell proliferation, cellular differentiation, maintenance of pregnancy and materno-conceptal communications in an autorcrine /paracrine manner. The present review focuses on the role of the intrauterine IGF system during periimplantation conceptus development. The IGF system comprises of IGF- I and IGF- II ligands, types I and II IGF receptors and six or more IGF-binding proteins(IGFBPs). IGFs and IGFBPs are expressed and secreted by uterine endometrium with tissue, pregnancy stage and species specificities under the influence of estrogen, progesterone and other growth factor(s). Conceptus also synthesizes components of the IGF system beginning from a period between 2-cell and blastocyst stages. Maternal IGFs are utilized by both maternal and conceptal tissues; conceptus-derived growth factors are believed to be taken up primarily by conceptus. IGFs enhance the development of both maternal and conceptal compartments in a wide range of biological processes. They stimulate proliferation and differentiation of endometrial cells and placental precursor cells including decidual transformation from stromal cells, placental formation and the synthesis of some steroid and protein hormones by differentiated endometrial cells or placenta. It is also well-documented in a number of experimental settings that both IGFs stimulate preimplantation embryo development. In slight contrast to these, prenatal mice carrying a null mutation of IGF and /or IGF receptor gene do not exhibit any apparent growth retardation until after implantation. Reason (s) for this discrepancy between the knock-out result and the in vitro ones, however, is not known. IGFBPs, in general, are believed to inhibit IGF action within the materno-conceptal unit, thereby allowing endometrial stromal cell differentiation as well as dampening ex cessive placental invasion into maternal tissue. There is evidence, however, indicating that IGFBP can enhance IGF action depending on environrnental conditions perhaps by directioning IGF ligand to the target cell. There is also a third possibility that certain IGFBPs and their proteolytic fragments may have their own biological activities independent of the IGF. In addition to IGFBPs, IGFBP proteases including those found within the uterine tissue or lumen are thought to enhance IGF bioavailability by degrading their substrates without affecting their bound ligand. In this regard, preliminary results in early pregnant pigs suggest that a partially characterized IGFBP protease activity in uterine luminal fluid enhances intrauterine IGF bioavailability during conceptus morphological development. In summary, a number of in vitro results indicate that IGFs stimulates the development of the rnaterno-conceptal unit during the periimplantation period. IGFBPs appear to inhibit IGF action by sequestering their ligands, whereas IGFBP proteases are thought to enhance intrauterine bioavailability of IGFs. Much is remaining to be clarified, however, regarding the roles of the individual IGF system components. These include in vivo evidence for the role of IGFs in early conceptus development, identification of IGF-regulated genes and their functions, specific roles for individual IGFBPs, identification and characterization of IGFBP proteases. The intrauterine IGF club house thus will be paying a lot of attention to forthcoming results in above and other areas, with its door wide-open!

  • PDF

MORPHOLOGICAL CHARACTERISTICS OF ODONTOBLAST IN NFI-C KNOCK/OUT MICE (Nuclear Factor I-C 결손 생쥐에서 상아모세포의 형태학적 특징)

  • Ko, Seung-Bak;Lee, Chang-Seop;Lee, Nan-Young;Lee, Sang-Ho;Kim, Heung-Joong;Park, Joo-Cheol
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.2
    • /
    • pp.181-191
    • /
    • 2006
  • NFI-C null mice demonstrated aberrant odontoblast differentiation and thus abnormal dentin formation while other tissues/organs in the body, including ameloblasts, appear to be unaffected and normal. However little is known about the mechanism of NFI-C function in odontoblast differentiation and dentin formation. Odontoblasts are tall, highly polarized cells that are responsible for formation and maintenance of the predentin and dentin. An indication of their polarity is the acquisition of specialized intercellular junctions. As preodontoblasts differentiate into odontoblasts, they are Joined and attached at the apical end by well developed terminal webs of cytoskeletal actins, and associated tight as well as adherent njunctions. In this study, in order to investigate if disruption of the NFI-C gene interferes with formation of a specific or other structural proteins of the intercellular junctions, we examined morphological characteristic of the aberrant odontoblast in NFI-C null mice using light and electron microscope. In addition, we determined the expression of major structural proteins of intercellular junctions, ZO-1 and occludin, during the differentiation of odontoblasts using immunohitochemistry. The results were as follows : 1. In light microscopy, abnormal odontoblasts of incisors of the NFI-C null mice were round in shape, lost their polarity, and trapped in osteodentin-like mineralized tissue. Mutant molars have relatively normal crowns, but short and abnormal differentiating adontoblasts in root formation area. 2. Electron microscopy of abnormal odontoblasts revealed the dissociation of the round osteoblast-like cells, the loss of their cellular polarity, and the absence of an intercellular junctional complex known as the tight junctions. 3. A mutant incisor showed labeling for ZO-1 at the proximal and distal ends of secreting ameloblasts, while staining for ZO-1 was not observed in the abnormal odontoblasts. 4. A normal incisor showed immunoreactivity for occludin in the differentiating odontoblasts. However, staining for occludin was not observed in the abnormal odontoblasts of mutant incisor. These results suggest that NFI-C gene causes dissociation of odontoblast and thus abberant odontoblast differentiation and abnormal dentin formation by interfering with the formation of intercellular junctions.

  • PDF