• Title/Summary/Keyword: gene expression in flowering

Search Result 47, Processing Time 0.028 seconds

Effects of Auxin, GA and Cytokinin on the Protein Synthesis (Accumulation) of Soybean (Auxin, GA 및 Cytokinin이 대두의 단백질합성 (축적)에 미치는 영향)

  • Yoo, Ki-Jung;Park, Chang-Kyu;Kim, Su-Il
    • Applied Biological Chemistry
    • /
    • v.29 no.1
    • /
    • pp.73-77
    • /
    • 1986
  • Aqueous solutions of 2,4-D, BA or $GA_3(10^{-6},\;10^{-5},\;and\;10^{-4}M,\;respectively)$ were sprayed onto soybean (Glycine max) plants in the flowering stage, and proteins of immature (33days after flowering) and mature (77days after flowering) seeds were analyzed by electrophoresis to elucidate the effects of the growth reguators on protein synthesis or protein accumulation in the seeds. Accumulations of some proteins were altered by 2,4-D or BA at certain concentrations, but no proteins were affected by $GA_3$. The ${\alpha}\;and\;{\alpha}'$ subunits of 7S and acidic subunit of 11S disappeared in mature seeds after treatments at the flowering stage with 2,4-D or BA. The presence of ${\alpha}\;and\;{\alpha}'$ subunits of 7S and acidic subunit of 11S in immature seeds indicated that the absence of the above polypeptides in mature seeds did not result from inhibitions in syntheses of the polypeptides by the growth regulators. Disappearance of the above proteins in mature seeds seemed to be concerned with the action of specific proteolytic enzyme (s) (metalloendopeptidase?), and 2,4-D and BA might promote gene expression or activation of the enzyme.

  • PDF

Cloning and Expression Characteristics of Pharbitis nil COP1 (PnCOP1) During the Floral Induction

  • Kim, Yun-Hee;Kim, Seong-Ryong;Heo, Yoon-Kang
    • Journal of Photoscience
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • The ubiquitin E3 ligase COP1 (Constitutive Photomorphogenesis 1) is a protein repressor of photomorphogenesis in Arabidopsisplants, and it found in various organisms, including animals. The COP1 protein regulates the stability of many of the light-signaling components that are involved in photomorphogenesis and in the developmental processes. To study the effect of COP1 on flowering in a short day plant, we have cloned a full-length of PnCOP1 (Pharbitis nil COP1) cDNA from Pharbitis nil Choisy cv. Violet, and we examined its transcript levels under various conditions. A full-length PnCOP1 cDNA consists of 2,280 bp nucleotidesthat contain 47 bp of 5'-UTR, 232 bp of 3'-UTR including the poly (A) tail, and 1,998 bp of the coding sequence. The deduced amino acid sequence contains 666 amino acids, giving it a theoretical molecular weight of 75 kD and a isolectric point of 6.2. The PnCOP1 contains three distinct domains, an N-terminal $Zn^2+$-binding RING-finger domain, a coiled-coil structure, and WD40 repeats at the C-terminal, implying that the protein plays a role in protein-protein interactions. The PnCOP1 transcript was detected in the cotyledon, hypocotyls and leaves, but not in root. The levels of the PnCOP1 transcript were reduced in leaves that were a farther distance away from the cotyledons. The expression level of the PnCOP1 gene was inhibited by light, while the expression was increased in the dark. During the floral inductive 16 hour-dark period for Pharbitis nil, the expression was increased and it reached its maximum at the 12th hour of the dark period. The levels of PnCOP1 mRNA were dramatically reduced upon light illumination. These results suggest that PnCOP1 may play an important function in the floral induction of Pharbitis nil.

  • PDF

GIGANTEA Regulates the Timing Stabilization of CONSTANS by Altering the Interaction between FKF1 and ZEITLUPE

  • Hwang, Dae Yeon;Park, Sangkyu;Lee, Sungbeom;Lee, Seung Sik;Imaizumi, Takato;Song, Young Hun
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.693-701
    • /
    • 2019
  • Plants monitor changes in day length to coordinate their flowering time with appropriate seasons. In Arabidopsis, the diel and seasonal regulation of CONSTANS (CO) protein stability is crucial for the induction of FLOWERING LOCUS T (FT) gene in long days. FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and ZEITLUPE (ZTL) proteins control the shape of CO expression profile antagonistically, although regulation mechanisms remain unknown. In this study, we show that GIGANTEA (GI) protein modulates the stability and nuclear function of FKF1, which is closely related to the stabilization of CO in the afternoon of long days. The abundance of FKF1 protein is decreased by the gi mutation, but increased by GI overexpression throughout the day. Unlike the previous report, the translocation of FKF1 to the nucleus was not prevented by ZTL overexpression. In addition, the FKF1-ZTL complex formation is higher in the nucleus than in the cytosol. GI interacts with ZTL in the nucleus, implicating the attenuation of ZTL activity by the GI binding and, in turn, the sequestration of FKF1 from ZTL in the nucleus. We also found that the CO-ZTL complex presents in the nucleus, and CO protein abundance is largely reduced in the afternoon by ZTL overexpression, indicating that ZTL promotes CO degradation by capturing FKF1 in the nucleus under these conditions. Collectively, our findings suggest that GI plays a pivotal role in CO stability for the precise control of flowering by coordinating balanced functional properties of FKF1 and ZTL.

Genetic improvement of potato plants

  • Suharsono, Sony
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.12-12
    • /
    • 2017
  • Genetic improvement in potato can be carried out through several approaches, as sexual crosses, somatic hybridization, mutation and genetic engineering. Although the approach is different, but the goal is the same, to get a superior cultivar. Mutation and genetic engineering are very interesting methods for genetic improvement of potato plants. Mutation by gamma-ray irradiation have been performed to get some new potato cultivars which are more resistant to disease and have higher productivity. We have carried out a mutation of some potato cultivars and obtained some excellent clones to be potentially released as new superior cultivars. By the mutation method, we have released one potato cultivar for the French fries industry, and we registered one cultivar of potato for chips, and two cultivar for vegetable potatoes. Actually we are doing multi-location trial for three clones to be released as new cultivars. Through genetic engineering, several genes have been introduced into the potato plant, and we obtained several clones of transgenic potato plants. Transgenic potato plants containing FBPase gene encoding for fructose bisphosphatase, have a higher rate of photosynthesis and higher tuber productivity than non-transgenic plants. This result suggests that FBPase plays an important role in increasing the rate of photosynthesis and potato tuber productivity. Some transgenic potatoes containing the Hd3a gene are currently being evaluated for their productivity. Over expression of the Hd3a gene is expected to increase tuber productivity and induce flowering in potatoes. Transgenic potato plants containing MmPMA gene encoding for plasma membrane ATPse are more tolerant to low pH than non-transgenic plants, indicating that plasma membrane ATPase plays an important role in the potato plant tolerance to low pH stress. Transgenic potato plants containing c-lysozyme genes, are highly tolerant of bacterial wilt diseases caused by Ralstonia solanacearum and bacterial soft rot disease caused by Pectobacterium carotovorum. Expression of c-lyzozyme gene plays an important role in increasing the resistance of potato plants to bacterial diseases.

  • PDF

High plant regeneration and ectopic expression of OsMADS1 gene in root chicory (Cichorium intybus L. var. sativus)

  • Lim Hak-Tae;Park Eung-Jun;Lee Ji-Young;Chun Ik-Jo;An Gyn-Heung
    • Journal of Plant Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.215-219
    • /
    • 2003
  • Optimal shoot regeneration and transformation conditions of root type chicory (Cichorium intybus L. var. sativus cv Cesare) were studied. Leaf explants were co-cultured with Agrobacterium tumefaciens, which contained NPTII as a selectable marker and a rice homeotic gene, OsMADS1, that encodes a MADS-domain-containing transcription factor. After one day of co-cultivation, explants were transferred to selection media consisting of MS basal medium supplemented with 0.5 mg/L BAP, 0.1 mg/L IAA, 70 mg/L kanamycin, and 250 mg/L cefotaxime. PCR and Southern blot analyses revealed stable integration of the OsMADS1 gene in the chicory genome. Four-teen original transgenic plants ($T_o$ plants) were acclimatized in the greenhouse and examined for their morphological characters. Most of the transgenic plants showed altered morphologies, such as short, bushy, and early-flowering phenotypes with reduced apical dominance. Additionally, half of the transgenic plants exhibited altered leaf shapes, and 4 out of 14 plants were sterile. These phenotypes were inherited by the next generation. Northern blot analysis confirmed expression of the OsMADS1 gene in both floral and vegetative organs.

Breeding of Early Heading Date with High Yield Using CRISPR/Cas9 in Rice

  • Eun-Gyeong Kim;Jae-Ryoung Park;Yoon-Hee Jang;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.285-285
    • /
    • 2022
  • Recent unpredictable climate change is a major cause of rice yield loss. In particular, methane is a key factor in global warming. Therefore rice breeders are trying to breed the reducing-methane gas emission rice using the crossbreeding method. However, the traditional crossbreeding method takes 8 to 10 years to breed a cultivar, and the anther culture method developed to shorten the breeding cycle also takes 6 to 7 years. On the other hand, CRISPR/Cas9 accurately edits the target trait and can rapidly breed rice cultivars by editing the target trait as a homozygous in 2-3 years. In addition, exogenous genetic elements such as Cas9 can be isolated from the G1 generation. Therefore, the flowering time was regulated by applying CRISPR/Cas9 technology, and OsCKq1 genome-editing (OsCKq1-G) rice with early flowered and high yield was bred in the field. Genome-editing of OsCKq1 applied CRISPR/Cas9 technology up-regulates the expression of the flowering promotion gene Ehd1 under long-day conditions induces early flowering and increases the yield by increasing the 1,000-grain weight. And as the generations advanced, each agricultural trait indicated a low coefficient of variation. As a result, indicated that OsCKq1 plays an important role in regulating the flowering time and is related to the trait determining yield. Therefore, OsCKq1-G can suggest a breeding strategy for the Net-Zero national policy for reducing-methane gas emission rice by shortening the breeding cycle with the early flowered, and high-yield rice. CRISPR/Cas9 technology is a rapid and accurate breeding technology for breeding rice cultivars with important characteristics.

  • PDF

Identification of functional SNPs in genes and their effects on plant phenotypes

  • Huq, Md. Amdadul;Akter, Shahina;Nou, Ill Sup;Kim, Hoy Taek;Jung, Yu Jin;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Single nucleotide polymorphism (SNP) is an abundant form of genetic variation within individuals of species. DNA polymorphism can arise throughout the whole genome at different frequencies in different species. SNP may cause phenotypic diversity among individuals, such as individuals with different color of plants or fruits, fruit size, ripening, flowering time adaptation, quality of crops, grain yields, or tolerance to various abiotic and biotic factors. SNP may result in changes in amino acids in the exon of a gene (asynonymous). SNP can also be silent (present in coding region but synonymous). It may simply occur in the noncoding regions without having any effect. SNP may influence the promoter activity for gene expression and finally produce functional protein through transcription. Therefore, the identification of functional SNP in genes and analysis of their effects on phenotype may lead to better understanding of their impact on gene function for varietal improvement. In this mini-review, we focused on evidences revealing the role of functional SNPs in genes and their phenotypic effects for the purpose of crop improvements.

Identification of the Regulatory Region Responsible for Vascular Tissue-Specific Expression in the Rice Hd3a Promoter

  • Pasriga, Richa;Cho, Lae-Hyeon;Yoon, Jinmi;An, Gynheung
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.342-350
    • /
    • 2018
  • Flowering time is determined by florigens. These genes include, Heading date 3a (Hd3a) and Rice FT 1 (RFT1) in rice, which are specifically expressed in the vascular tissues of leaves at the floral transition stage. To study the cis-regulatory elements present in the promoter region of Hd3a, we generated transgenic plants carrying the 1.75-kb promoter fragment of Hd3a that was fused to the ${\beta}$-glucuronidase (GUS) reporter gene. Plants expressing this construct conferred a vascular cell-specific expression pattern for the reporter gene. However, GUS was expressed in leaves at all developmental stages, including the early seedling stage when Hd3a was not detected. Furthermore, the reporter was expressed in roots at all stages. This suggests that the 1.75-kb region lackings cis-elements that regulate leaf-specific expression at the appropriate developmental stages. Deletion analyses of the promoter region indicated that regulatory elements determining vascular cell-specific expression are present in the 200-bp region between -245 bp and -45 bp from the transcription initiation site. By transforming the Hd3a-GUS construct to rice cultivar 'Taichung 65' which is defective in Ehd1, we observed that Ehd1 is the major regulatory element that controls Hd3a promoter activity.

Evaluation of Tissue Culture Efficiency in a Speed Breeding System for Stable and Sustainable Supported Wheat (Triticum aestivum) Immature Embryogenesis (안정적이며 지속적 밀(Triticum aestivum) 미성숙배 조직배양을 위한 스피드 브리딩 조건의 배양 효율 검정)

  • Lee, Geon Hee;Kim, Tae Kyeum;Choi, Chang Hyun;Kim, Jae Yoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.365-376
    • /
    • 2020
  • Immature embryogenesis is a useful process in wheat tissue culture, including transgenic technology, because of its high regeneration efficiency compared to that in other tissues. However, it is a very labor-intensive and time-restrictive method, because the preparation of immature embryos is limited to the optimal time after flowering. In this experiment, 'Speed Breeding', a breeding technique that accelerates breeding generation advancement by extending the photoperiod, was applied to the wheat variety 'Bobwhite'. A controlled growth room was constructed by adjusting the photoperiod (22-hour light/2-hour dark) using LED lights at temperature of 22℃. After vernalization of the Bobwhite seeds at 4℃ for 4 weeks, the seedlings were grown in a controlled growth room and a greenhouse to compare the heading date. In both conditions, calli were induced from immature embryos on the 11th day after flowering. After 4 weeks, the calli were transferred to a regeneration medium. Regeneration efficiencies under greenhouse conditions and Speed Breeding conditions were determined as 45.05% and 43.18%, respectively. Antioxidant enzyme activity and reference gene expression analysis were performed to confirm the presence of stress due to an extremely long-day photoperiod. As a result, the antioxidant enzyme activity was not distinguished from that of the greenhouse condition. The reference gene expression analysis revealed that the PsaA and CDC genes were highly expressed under the Speed Breeding condition. However, expression of PsbA was similar expression in both conditions. These results will provide useful information for the application of immature embryogenesis to the wheat transformation system.