• Title/Summary/Keyword: gene expression and transgenic potato

Search Result 44, Processing Time 0.025 seconds

Introduction of Hog Cholera Virus Gene into Potato Plants by Agrobacterium-mediated Transformation and the Analysis of Its Expression

  • Kim, Hyun-Soon;Jeon, Jae-Heung;Kim, Cheol-Jung;Hyouk Joung
    • Journal of Plant Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.155-161
    • /
    • 2002
  • The HCV gene was expressed in potato plants under the control of the constitutive CaMV 355 promoter or tuber-specific patatin promoter. Solanum tuberosum plants carrying a plant expression vector harboring the encoding region of HCV gene were generated by Agrobacterium tumefaciens-mediated in vitro transformation methods. The presence of HCV gene in the plant genome was detected by PCR and DNA hybridization experiments. We obtained the 5 lines of transgenic potato with the pMBPHCV construct and 4 lines of transgenic potato with the pATHCV construct. The HCV transgenic stably integrated into the potato genome, as well as their transcription. HCV mRNA was identified in leaf and tuber tissues of transgenic plants by Northern blot analysis. The transgenic potato plants produced the expected transcript, and the corresponding HCV protein accumulated in individual transgenic plants.

Genetic improvement of potato plants

  • Suharsono, Sony
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.12-12
    • /
    • 2017
  • Genetic improvement in potato can be carried out through several approaches, as sexual crosses, somatic hybridization, mutation and genetic engineering. Although the approach is different, but the goal is the same, to get a superior cultivar. Mutation and genetic engineering are very interesting methods for genetic improvement of potato plants. Mutation by gamma-ray irradiation have been performed to get some new potato cultivars which are more resistant to disease and have higher productivity. We have carried out a mutation of some potato cultivars and obtained some excellent clones to be potentially released as new superior cultivars. By the mutation method, we have released one potato cultivar for the French fries industry, and we registered one cultivar of potato for chips, and two cultivar for vegetable potatoes. Actually we are doing multi-location trial for three clones to be released as new cultivars. Through genetic engineering, several genes have been introduced into the potato plant, and we obtained several clones of transgenic potato plants. Transgenic potato plants containing FBPase gene encoding for fructose bisphosphatase, have a higher rate of photosynthesis and higher tuber productivity than non-transgenic plants. This result suggests that FBPase plays an important role in increasing the rate of photosynthesis and potato tuber productivity. Some transgenic potatoes containing the Hd3a gene are currently being evaluated for their productivity. Over expression of the Hd3a gene is expected to increase tuber productivity and induce flowering in potatoes. Transgenic potato plants containing MmPMA gene encoding for plasma membrane ATPse are more tolerant to low pH than non-transgenic plants, indicating that plasma membrane ATPase plays an important role in the potato plant tolerance to low pH stress. Transgenic potato plants containing c-lysozyme genes, are highly tolerant of bacterial wilt diseases caused by Ralstonia solanacearum and bacterial soft rot disease caused by Pectobacterium carotovorum. Expression of c-lyzozyme gene plays an important role in increasing the resistance of potato plants to bacterial diseases.

  • PDF

Cloning of Superoxide Dismutase (SOD) Gene of Lily 'Marcopolo' and Expression in Transgenic Potatoes

  • Park, Ji-Young;Kim, Hyun-Soon;Youm, Jung-Won;Kim, Mi-Sun;Kim, Ki-Sun;Joung, Hyouk;Jeon, Jae-Heung
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Differential display reverse transcription PCR (DDRT-PCR) analysis was performed on lily 'Marcopolo' bulb scale for isolation of expressed genes during bulblet formation. Cu/Zn lily-superoxide dismutase (LSOD) of 872 bp gene, with ability to scavenge reactive oxygen in stress environment, was isolated. Northern blot analysis showed expression levels of LSOD maximized 12 days after bulblet formation. Ti plasmid vectors were constructed with sense and antisense expressions of LSOD gene and transformed into potato. Southern blot analysis of transgenic potatoes revealed different copies of T-DNA were incorporated into potato genome. In transgenic potatoes, lily SOD gene was overexpressed in sense lines and not in antisense lines. In native polyacrylamide gel electrophoresis analysis, additional engineered LSOD was detected in sense overexpressed transgenic line only. Transgenic potatoes were subjected to oxidative stress, such as herbicide methyl viologen (MV). Transgenic potato lines with sense orientation exhibited increased tolerance to MV, whereas in antisense lines exhibited decreased tolerance. In vitro tuberization of transgenic potato with sense orientation was promoted, but was inhibited in transgenic potato with antisense orientation.

Expression of resveratrol synthase gene and accumulation of resveratrol in transgenic potatoes (Solanum tuberosum L.)

  • Yi, Jung Yoon;Seo, Hyo Won;Yun, Song Joong;Ok, HyunChoong;Park, YoungEun;Cho, Ji Hong;Cho, HyunMook
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.385-390
    • /
    • 2009
  • A resveratrol synthase (RS) gene was isolated from peanut (Arachis hypogaea, L. cv. Jinpoong) plants. This gene was placed under the control of the cauliflower mosaic virus 35S promoter (CaMV35S) and introduced into two Korean varieties of potato (Solanum tuberosum L. cvs. Jasim and Jowon) plants by Agrobacterium-mediated gene transfer. Putative transformants were screened by PCR with primers designed from CaMV 35S promoter, NOS terminator and RS gene. Most of selected transgenic potato plants showed the amplification of expected fragments by PCR of genomic DNA with gene-specific primers, while they were absent in untransformed control plants. Expression of the resveratrol synthase gene was also examined by northern blot analysis. The transformants showed a band which was lacking in the control plant, confirming that the introduced gene is transcribed into mRNA in the transformants. The strength of the band, which reflected the level of mRNA expression, differed among the individual transformants. Among the transformants obtained, the highest trans-resveratrol content in the transgenic young leaves of purple-fleshed "Jashim" was $2.11{\mu}gg^{-1}$ fresh weight and that in the microtubers in vitro of purple fleshed "Jashim" was $8.31{\mu}gg^{-1}$ fresh weight. This amount of resveratrol may have a positive biological effect on human health.

Molecular Cloning and Expression of Dihydroflavonol 4-reductase Gene in Tuber Organs of Purple-fleshed Potatoes

  • Kang, Won-Jin;Lee, Yong-Hwa;Kim, Hyun-Soon;Joung, Hyouk;Jeon, Jae-Heung
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.75-81
    • /
    • 2006
  • A full-length cDNA encoding dihydroflavonol 4-reductase (st-dfr) of potato was isolated by rapid amplification of cDNA ends, and their expression was investigated from purple-fleshed potato (Solanum tuberosum L. cv. Jashim). The st-dfr exists as a member of a small gene family and its transcripts was abundant in the order of tuber flesh, stem, leaf, and root. The expressions of st-dfr gene were light inducible and cultivar dependant. Transgenic potato plants harboring antisense st-dfr (AS-DFR) sequences were analyzed. The accumulation of mRNA was nearly completely inhibited as a result of introducing an AS-DFR gene under the control of the 35S CaMV promoter into the red tuber skin Solanum tuberosum L. cv. Desiree. The anthocyanin content of the tuber peels of the transgenic lines was dramatically decreased by up to 70%. The possible production of flavonols in the peels of AS-DFR transgenic potatoes was discussed.

Analysis of Genes Activated by Salt and ER Stress in bZIP17 and bZIP28 Gene Transgenic Potato Plants

  • Kim, Kyung Hwa;Choi, Man Soo;Chun, Jae Buhm;Jin, Mi Na;Jeong, Nam Hee;Kim, Dool Yi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2018.10a
    • /
    • pp.179-179
    • /
    • 2018
  • Potato (Solanum tubersosum L.) is susceptible to various environmental stresses such as salt, high temperature, and drought. Especially, potato tuber growth is greatly affected by drought that causes not only yield reduction but also loss of tuber quality. Since unpredictable global weather changes cause more severe and frequent water limiting conditions, improvement of potato drought tolerance can minimize such adverse effects under drought and can impact on sustainable potato production. Genetic engineering can be utilized to improve potato drought tolerance, but such approaches using endogenous potato genes have rarely been applied. We were obtained AtbZIP28 gene transgenic potato plants. It is identified transcript levels at various stress conditions, polyethylene glycol (PEG), NaCl, (ABA). Also, For identification to regulate ER stress response genes in AtbZIP28 gene transgenic potato plant, we screened seven potato genes from RNA-seq analysis under TM treatment. Five and two genes were up- and down-regulated by TM, respectively. Their expression patterns were re-examined at stress agents known to elicit TM, DTT, DMSO and salt stress.

  • PDF

Expression of Aβ-Fc Fusion Protein in Transgenic Potato

  • Kim, Hyun-Soon;Youm, Jung Won;Lee, Jeong-Hwan;Jeon, Jae-Heung;Ko, Kisung
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.375-381
    • /
    • 2014
  • Transgenic potato was generated to express recombinant 5 repeated ${\beta}$-amyloid ($A{\beta}$) peptides, potential antigens to be applied as a preventive accine for Alzheimer's disease using Agrobacterium mediated transformation. The $A{\beta}$ peptides were fused to the human IgG Fc fragment enhancing protein and KDEL, which is the endoplasmic reticulum (ER) retention signal ($5A{\beta}$-FcK). The $5A{\beta}$-FcK, was expressed under the control of the duplicated 35S promoter. PCR analysis confirmed the presence of the transgene in several transgenic potato lines. Southern blot analysis showed only a single gene copy number in transgenic line 22, whereas multiple gene copy numbers were shown for transgenic lines 31 and 44. Northern blot analysis showed that line 22 had stronger mRNA levels when compared to lines 31 and 44. Immunoblot analysis confirmed that the $5A{\beta}$-FcK protein was expressed in the transgenic potato plant. These results indicate that $5A{\beta}$ fused to Fc can be expressed in potato plants.

Effects on the Development of Plutella xylostella and Spodoptera litura after Feeding on Transgenic Cabbage Expressing Potato Proteinase Inhibitor II and Bar Genes

  • Lee, Yeon-Hee;Lee, Sang-Guei;Park, Beom-Seok;Lee, Young-Su;Jin, Yong-Moon;Kim, Ho-il;Suh, Seok-Cheol
    • Journal of Plant Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.145-150
    • /
    • 2004
  • Cabbage plants were transformed with the potato proteinase inhibitor II (PINII) gene, bar gene, and hpt gene using Agrobacterium. The expression of the PINII gene was driven by its own promoter which was wound-inducible. Ten transgenic plants were obtained from medium containing hygromycin as a selection antibiotic. The integration and expression of PINII and bar genes were confirmed by Southern and Northern hybridization. Growth and development of diamondback moths (Plutella xylostella) and tobacco cutworm (Spodoptera litura) larvae were examined on $T_1$ plants. The weight of the larvae and pupae of these two insects grown on transgenic plants was not different compared to those grown on wild type plants. However, the pupation and emergence rate of diamondback moths and tobacco cutworms fed on some transgenic plants was lower than on wild type plants. These results suggest that the PINII transgene under the control of a wound-induced promoter may be used for control of insects in transgenic cabbage through reduction of insect progeny number.

Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach

  • Zhang, Ning;Si, Huai-Jun;Wen, Gang;Du, Hong-Hui;Liu, Bai-Lin;Wang, Di
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • Drought and salinity are the most important abiotic stresses that affect the normal growth and development of plants. Glycine betaine is one of the most important osmolytes present in higher plants that enable them to cope with environmental stresses through osmotic adjustment. In this study, a betaine aldehyde dehydrogenase (BADH) gene from spinach under the control of the stress-induced promoter rd29A from Arabidopsis thaliana was introduced into potato cultivar Gannongshu 2 by the Agrobacterium tumefaciens system. Putative transgenic plants were confirmed by Southern blot analysis. Northern hybridization analysis demonstrated that expression of BADH gene was induced by drought and NaCl stress in the transgenic potato plants. The BADH activity in the transgenic potato plants was between 10.8 and 11.7 U. There was a negative relationship (y = -2.2083x + 43.329, r = 0.9495) between BADH activity and the relative electrical conductivity of the transgenic potato plant leaves. Plant height increased by 0.4-0.9 cm and fresh weight per plant increased by 17-29% for the transgenic potato plants under NaCl and polyethylene glycol stresses compared with the control potato plants. These results indicated that the ability of transgenic plants to tolerate drought and salt was increased when their BADH activity was increased.

Metabolic engineering of Vit C: Biofortification of potato

  • Upadhyaya, Chandrama P.;Park, Se-Won
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.14-14
    • /
    • 2010
  • Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed two different kinds of transgenic potato plants (Solanumtuberosum L. cv. Taedong Valley) overexpressing strawberry GalUR and mouse GLoase gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the these genes in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid(AsA) levels in transgenic tubers were determined by high-performance liquid chromatography(HPLC). The over-expression of these genes resulted in 2-4 folds increase in AsA intransgenic potato and the levels of AsA were positively correlated with increased geneactivity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen(MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of these gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control. We have also investigated the mechanism of the abiotic stress tolerance upon enhancing the level of the ascorbate in transgenic potato. The transgenic potato plants overexpressing GalUR gene with enhanced accumulation of ascorbate were investigated to analyze the antioxidants activity of enzymes involved in the ascorbate-glutathione cycle and their tolerance mechanism against different abiotic stresses under invitro conditions. Transformed potato tubers subjected to various abiotic stresses induced by methyl viologen, sodium chloride and zinc chloride showed significant increase in the activities of superoxide dismutase(SOD, EC 1.15.1.1), catalase, enzymes of ascorbate-glutathione cycle enzymes such as ascorbate peroxidase(APX, EC 1.11.1.11), dehydroascorbate reductase(DHAR, EC 1.8.5.1), and glutathione reductase(GR, EC 1.8.1.7) as well as the levels of ascorbate, GSH and proline when compared to the untransformed tubers. The increased enzyme activities correlated with their mRNA transcript accumulation in the stressed transgenic tubers. Pronounced differences in redox status were also observed in stressed transgenic potato tubers that showed more tolerance to abiotic stresses when compared to untransformed tubers. From the present study, it is evident that improved to lerance against abiotic stresses in transgenic tubers is due to the increased activity of enzymes involved in the antioxidant system together with enhanced ascorbate accumulated in transformed tubers when compared to untransformed tubers. At moment we also investigating the role of enhanced reduced glutathione level for the maintenance of the methylglyoxal level as it is evident that methylglyoxal is a potent cytotoxic compound produced under the abiotic stress and the maintenance of the methylglyoxal level is important to survive the plant under stress conditions.

  • PDF