• 제목/요약/키워드: gene diversity

검색결과 956건 처리시간 0.026초

Genetic Diversity and Phylogenetic Relationships between Chinese Cabbages [B. campestris (syn. rapa) L.] and Cabbages (B. oleracea L.) in Korea

  • Sun, Yan-Lin;Zheng, Shi-Lin;Park, Kyong-Cheul;Choi, Ki-Young;Kang, Ho-Min;Hong, Soon-Kwan
    • 원예과학기술지
    • /
    • 제34권2호
    • /
    • pp.294-304
    • /
    • 2016
  • Members of the genus Brassica, which are known as oil crops or cruciferous vegetables, are widely cultivated in Canada, Australia, Asian and Europe. Because Brassica species have high yields, are well adapted to their environments, and are self-incompatible, the germplasm is abundant. Previous studies have reported abundant genetic diversity even within Brassica subspecies. In Korea, fresh cabbage leaves are eaten with roast meat, and to meet the current popular demand, new varieties are being increasingly bred. To determine the genetic diversity and relationships among the cabbage vegetables in Korea, we evaluated the genetic variation of 18 accessions based on 5S and 18S ribosomal RNA (rRNA) gene sequences. We detected many variable nucleotide sites, especially in the 5S rRNA gene sequences. Because the length of the 18S rRNA gene might influence the dissimilarity rate statistics, we used both the 5S and 18S sequences to analyze the phylogenetic relationships. S7 (B. oleracea) showed the most distant phylogenetic relationship with the other Brassica species. Interestingly, B2 (B. oleracea), B15, and B18 (B. campestris) have three different types of leaf profiles, and were divided into one group, and the other Brassica species formed another group. Statistical analysis of interspecies and intraspecies genetic distances revealed that B. campestris L. showed higher genetic diversity than B. oleracea L. This work provides additional data that facilitates the evaluation of the genetic variation and relationships among Brassica species. The results could be used in functional plant breeding programs to improve Brassica crops.

Allelic Diversity of MSP1 Gene in Plasmodium falciparum from Rural and Urban Areas of Gabon

  • Mawili-Mboumba, Denise Patricia;Mbondoukwe, Noe;Adande, Elvire;Bouyou-Akotet, Marielle Karine
    • Parasites, Hosts and Diseases
    • /
    • 제53권4호
    • /
    • pp.413-419
    • /
    • 2015
  • The present study determined and compared the genetic diversity of Plasmodium falciparum strains infecting children living in 2 areas from Gabon with different malaria endemicity. Blood samples were collected from febrile children from 2008 to 2009 in 2 health centres from rural (Oyem) and urban (Owendo) areas. Genetic diversity was determined in P. falciparum isolates by analyzing the merozoite surface protein-1 (msp1) gene polymorphism using nested-PCR. Overall, 168 children with mild falciparum malaria were included. K1, Ro33, and Mad20 alleles were found in 110 (65.5%), 94 (55.9%), and 35 (20.8%) isolates, respectively, without difference according to the site (P>0.05). Allelic families' frequencies were comparable between children less than 5 years old from the 2 sites; while among the older children the proportions of Ro33 and Mad20 alleles were 1.7 to 2.0 fold higher at Oyem. Thirty-three different alleles were detected, 16 (48.5%) were common to both sites, and 10 out of the 17 specific alleles were found at Oyem. Furthermore, multiple infection carriers were frequent at Oyem (57.7% vs 42.2% at Owendo; P=0.04) where the complexity of infection was of 1.88 (${\pm}0.95$) higher compared to that found at Owendo ($1.55{\pm}0.75$). Extended genetic diversity of P. falciparum strains infecting Gabonese symptomatic children and high multiplicity of infections were observed in rural area. Alleles common to the 2 sites were frequent; the site-specific alleles predominated in the rural area. Such distribution of the alleles should be taken into accounts when designing MSP1 or MSP2 malaria vaccine.

Disentangling Evolutionary Pattern and Haplotype Distribution of Starch Synthase III-1 (SSIIIb) in Korean Rice Collection

  • Bhagwat Nawade ;Yong-Jin Park
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.214-214
    • /
    • 2022
  • Soluble starch synthases (SSs) elongate α-glucans from ADP-Glc to the glucan nonreducing ends and play a critical role in synthesizing resistant starch in the rice. A total of 10 SSs isoforms were reported in rice, including granules-bound starch synthase I (GBSSI), GBSSII, starch synthase I (SSI), SSIIa (SSII-3), SSIIb (SSII-2), SSIIc (SSII-1), SSIIIa (SSIII-2), SSIIIb (SSIII-1), SSIVa (SSIV-1), and SSIVb (SSIV-2). SSIII proteins are involved in forming the B chain and elongating cluster filling chains in amylopectin metabolism. The functions of SSIIIb (SSIII-1) are less clear as compared to SSs. Here, we sought to shed light on the genetic diversity profiling of the SSIII-1 gene in 374 rice accessions composed of 54 wild-type accessions and 320 bred cultivars (temperate japonica, indica, tropical japonica, aus, aromatic, and admixture). In total, 17 haplotypes were identified in the SSIII-1 coding region of 320 bred cultivars, while 44 haplotypes were detected from 54 wild-type accessions. The genetic diversity indices revealed the most negative Tajima's D value in the temperate-japonica, followed by the wild type, while Tajima's D values in other ecotypes were positive, indicating balancing selection. Nucleotide diversity in the SSIII-1 region was highest in the wild group (0.0047) while lowest in temperate-japonica. Lower nucleotide diversity in the temperate-japonica is evidenced by the negative Tajima's D and suggested purifying selection. The fixation index (FST) revealed a very high level of gene flow (low FST) between the tropical-japonica and admixture groups (FST=-0.21) followed by admixture and wild groups (-0.04), indica and admixture groups (0.02), while low gene flow with higher FST estimates between the temperate-japonica and aus groups (0.72), tropical-japonica and aromatic groups (0.71), and temperate-japonica and admixture groups (0.52). Taken together, our study offers insights into haplotype diversity and evolutionary fingerprints of SSIII-1. It provides genomic information to increase the resistant starch content of cooked rice.

  • PDF

Genetic structure analysis of domestic companion dogs using high-density SNP chip

  • Gwang Hyeon Lee;Jae Don Oh;Hong Sik Kong
    • 한국동물생명공학회지
    • /
    • 제39권2호
    • /
    • pp.138-144
    • /
    • 2024
  • Background: As the number of households raising companion dogs increases, the pet genetic analysis market also continues to grow. However, most studies have focused on specific purposes or native breeds. This study aimed to collect genomic data through single nucleotide polymorphism (SNP) chip analysis of companion dogs in South Korea and perform genetic diversity analysis and SNP annotation. Methods: We collected samples from 95 dogs belonging to 26 breeds, including mixed breeds, in South Korea. The SNP genotypes were obtained for each sample using an AxiomTM Canine HD Array. Quality control (QC) was performed to enhance the accuracy of the analysis. A genetic diversity analysis was performed for each SNP. Results: QC initially selected SNPs, and after excluding non-diverse ones, 621,672 SNPs were identified. Genetic diversity analysis revealed minor allele frequencies, polymorphism information content, expected heterozygosity, and observed heterozygosity values of 0.220, 0.244, 0.301, and 0.261, respectively. The SNP annotation indicated that most variations had an uncertain or minimal impact on gene function. However, approximately 16,000 non-synonymous SNPs (nsSNPs) have been found to significantly alter gene function or affect exons by changing translated amino acids. Conclusions: This study obtained data on SNP genetic diversity and functional SNPs in companion dogs raised in South Korea. The results suggest that establishing an SNP set for individual identification could enable a gene-based registration system. Furthermore, identifying and researching nsSNPs related to behavior and diseases could improve dog care and prevent abandonment.

The Phylogenetic Affiliation of an Uncultured Population of Ammonia-Oxidizing Bacteria Harboring Environmental Sequences of amoA Cluster-3

  • Hong, Jin-Kyung;Cho, Jae-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권6호
    • /
    • pp.567-573
    • /
    • 2011
  • We investigated the phylogenetic diversity of ammoniaoxidizing bacteria (AOB) in Yellow Sea continental shelf sediment by the cloning and sequencing of PCR-amplified amoA and 16S rRNA genes. Phylogenetic analysis of the amoA-related clones revealed that the diversity of AOB was extremely low at the study site. The majority (92.7%) of amoA clones obtained belonged to a single cluster, environmental amoA cluster-3, the taxonomic position of which was previously unknown. Phylogenetic analysis on AOB-specific 16S rRNA gene sequences also demonstrated a very low diversity. All of the cloned 16S rRNA gene sequences comprised a single phylotype that belonged to the members of uncultured Nitrosospira cluster-1, suggesting that AOB belonging to the uncultured Nitrosospira cluster-1 could carry amoA sequences of environmental amoA cluster-3.

A report of six unrecorded bacterial species isolated from soil samples in Korea

  • Da Som Kim;Mi Jin Jeon;Won-Jae Chi
    • Journal of Species Research
    • /
    • 제13권1호
    • /
    • pp.61-66
    • /
    • 2024
  • During an investigation of unrecorded prokaryotic species in Korea, six unrecorded bacterial strains were isolated from soil samples collected from Uljin-gun. Based on a similarity search using the 16S rRNA gene sequence of the isolated strains and the construction of the neighbor-joining phylogenetic tree, five strains were identified to the genus Pseudomonas of the family Pseudomonadaceae, while one strain was identified as a species belonging to the genus Paenibacillus of the family Paenibacillaceae. The details of these unreported species, including gram staining reaction, colony and cell morphology, basic biochemical characteristics, strain ID, and isolation source, are described in the description of the strains.

Bacterial Diversity in the Human Saliva from Different Ages

  • Kang, Jung-Gyu;Kim, Seong-Hwan;Ahn, Tae-Young
    • Journal of Microbiology
    • /
    • 제44권5호
    • /
    • pp.572-576
    • /
    • 2006
  • To obtain primary idea on oral bacterium species that are generally present in periodotally healthy Koreans, the oral bacterial flora in the saliva of four periodontally healthy Koreans at different ages (5, 32, 35, 65) was investigated in this study. For this investigation, 16S rRNA gene clone libraries were generated from the saliva of the four healthy Koreans, and 50 clones were randomly selected from each saliva clone library and sequenced. Totally, 37 different kinds of bacterial 16S rRNA gene sequences were identified based on sequence homology search through GenBank database. The 37 kinds of saliva clone sequences were classified to 14 genera and 2 uncultured and 1 unidentified bacteria. Among the 14 identified genera, Streptococcus, Prevotella, and Veillollella were common genera, and Streptococcus was dominant genus that accounted for 7 different species. Among the seven Streptococcus species, S. salivarius appeared as the most common species. More numbers of species belonging to the genera Streptococcus and Prevotella was present in saliva from ages 32 and 35. While saliva from ages 5 and 65 showed more numbers of species belonging to the genera Rothia, including potential pathogenic species. Overall, saliva of a young child and a senior showed higher bacterial diversity than that of young adults.

Population genetic structure based on mitochondrial DNA analysis of Ikonnikov's whiskered bat (Myotis ikonnikovi-Chiroptera: Vespertilionidae) from Korea

  • Park, Soyeon;Noh, Pureum;Choi, Yu-Seong;Joo, Sungbae;Jeong, Gilsang;Kim, Sun-Sook
    • Journal of Ecology and Environment
    • /
    • 제43권4호
    • /
    • pp.454-461
    • /
    • 2019
  • Background: Ikonnikov's whiskered bat (Myotis ikonnikovi) is found throughout the Korean Peninsula, as well as in Kazakhstan, Russia, Mongolia, China, and Japan. It is small-sized and primarily inhabits old-growth forests. The decrease and fragmentation of habitats due to increased human activity may influence the genetic structure of bat populations. This study was designed to elucidate the population genetic structure of M. ikonnikovi using mitochondrial genes (cytochrome oxidase I and cytochrome b). Results: The results showed that M. ikonnikovi populations from Korea have high genetic diversity. Although genetic differentiation was not detected for the COI gene, strong genetic differentiation of the Cytb gene between Mt. Jeombong and Mt. Jiri populations was observed. Moreover, the results indicated that the gene flow of the maternal lineage may be limited. Conclusions: This study is the first to identify the genetic population structure of M. ikonnikovi. We suggest that conservation of local populations is important for sustaining the genetic diversity of the bat, and comprehensive studies on factors causing habitat fragmentation are required.

Genetic Analysis of Wheat for Plant Height by RNA-seq Analysis of Wheat Cultivars 'Keumkang' and 'Komac 5'

  • Moon Seok Kim;Jin Seok Yoon;Yong Weon Seo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.275-275
    • /
    • 2022
  • One of the most widely grown food crops in the world, wheat, is increasing more lodged since for increased rains and winds caused by abnormal climate. During the Green Revolution, shorter wheat cultivars were bred using many Rht genes to increase lodging resistance. However, since only some Rht genes were used for breeding shorter wheat, it may have had a limited impact on wheat breeding and reduced genetic diversity. Therefore, it is essential to search for genes that have breeding potential and affect dwarfism in order to increase the genetic diversity of dwarf characteristics in wheat. In this study, we performed the RNA-seq between 'Keumkang' and 'Komac 5' ('Keumkang' mutant) to analyze the difference in plant height. Differentially expressed genes (DEGs) analysis and Gene function annotation were performed using 265,365,558 mapped reads. Cluster set analysis was performed to compress and select candidate gene DEGs affecting plant height, stem and internode. Gene expression analysis was performed in order to identify the functions of the selected genes by condensing the results of the DEG analysis into a cluster set analysis. This analysis of these plant height-related genes could help reduce plant height, improve lodging resistance, and increase wheat yield. Its application to wheat breeding will also affect the increased genetic diversity of wheat dwarfism.

  • PDF

Occurrence and Evolutionary Analysis of Coat Protein Gene Sequences of Iranian Isolates of Sugarcane mosaic virus

  • Moradi, Zohreh;Nazifi, Ehsan;Mehrvar, Mohsen
    • The Plant Pathology Journal
    • /
    • 제33권3호
    • /
    • pp.296-306
    • /
    • 2017
  • Sugarcane mosaic virus (SCMV) is one of the most damaging viruses infecting sugarcane, maize and some other graminaceous species around the world. To investigate the genetic diversity of SCMV in Iran, the coat protein (CP) gene sequences of 23 SCMV isolates from different hosts were determined. The nucleotide sequence identity among Iranian isolates was more than 96%. They shared nucleotide identities of 75.5-99.9% with those of other SCMV isolates available in GenBank, the highest with the Egyptian isolate EGY7-1 (97.5-99.9%). The results of phylogenetic analysis suggested five divergent evolutionary lineages that did not completely reflect the geographical origin or host plant of the isolates. Population genetic analysis revealed greater between-group than within-group evolutionary divergence values, further supporting the results of the phylogenetic analysis. Our results indicated that natural selection might have contributed to the evolution of isolates belonging to the five identified SCMV groups, with infrequent genetic exchanges occurring between them. Phylogenetic analyses and the estimation of genetic distance indicated that Iranian isolates have low genetic diversity. No recombination was found in the CP cistron of Iranian isolates and the CP gene was under negative selection. These findings provide a comprehensive analysis of the population structure and driving forces for the evolution of SCMV with implications for global exchange of sugarcane germplasm. Gene flow, selection and somehow homologous recombination were found to be the important evolutionary factors shaping the genetic structure of SCMV populations.