• 제목/요약/키워드: gender classification

검색결과 286건 처리시간 0.022초

저전력 임베디드 보드 환경에서의 딥 러닝 기반 성별인식 시스템 구현 (Gender Classification System Based on Deep Learning in Low Power Embedded Board)

  • 정현욱;김대회;;노용만
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권1호
    • /
    • pp.37-44
    • /
    • 2017
  • 사물 인터넷(IoT) 산업이 확산되면서 사용자의 정보를 특별한 조작 없이 물체가 스스로 인식하는 일이 매우 중요해졌다. 그중에서도 성별(남, 여)은 생물학적인 구조가 달라 성향이 다르고 사회적으로도 기대하는 바가 다르기 때문에 매우 중요한 요소이다. 하지만 얼굴 이미지를 기반으로 한 성별 인식과 관련된 연구는 동일한 성별이라도 다양한 생김새를 가지고 있어서 여전히 도전적인 분야이다. 그리고 성별인식 시스템을 사물 인터넷에 적용하기 위해서는 디바이스 크기를 소형화 시켜야 하며 저전력으로 구동이 가능해야 한다. 따라서 본 논문에서는 저전력으로 실제 사물에서 성별을 인식할 수 있는 기능을 탑재하기 위해 딥 러닝 기반의 성별 인식 알고리즘을 제안하고 이를 모바일 GPU 임베디드 보드에 포팅하여 최종적으로 실시간 성별인식 시스템을 구현하였다. 실험에서는 소비전력과 초당 처리 가능한 프레임 수를 PC환경과 모바일 GPU 임베디드 환경에서 측정하여 저전력 환경에서도 성별 인식이 가능함을 증명하였다.

앙상블 멀티태스킹 딥러닝 기반 경량 성별 분류 및 나이별 추정 (Light-weight Gender Classification and Age Estimation based on Ensemble Multi-tasking Deep Learning)

  • 쩐꾸억바오후이;박종현;정선태
    • 한국멀티미디어학회논문지
    • /
    • 제25권1호
    • /
    • pp.39-51
    • /
    • 2022
  • Image-based gender classification and age estimation of human are classic problems in computer vision. Most of researches in this field focus just only one task of either gender classification or age estimation and most of the reported methods for each task focus on accuracy performance and are not computationally light. Thus, running both tasks together simultaneously on low cost mobile or embedded systems with limited cpu processing speed and memory capacity are practically prohibited. In this paper, we propose a novel light-weight gender classification and age estimation method based on ensemble multitasking deep learning with light-weight processing neural network architecture, which processes both gender classification and age estimation simultaneously and in real-time even for embedded systems. Through experiments over various well-known datasets, it is shown that the proposed method performs comparably to the state-of-the-art gender classification and/or age estimation methods with respect to accuracy and runs fast enough (average 14fps) on a Jestson Nano embedded board.

컨볼루션 신경망을 이용한 CCTV 영상 기반의 성별구분 (CCTV Based Gender Classification Using a Convolutional Neural Networks)

  • 강현곤;박장식;송종관;윤병우
    • 한국멀티미디어학회논문지
    • /
    • 제19권12호
    • /
    • pp.1943-1950
    • /
    • 2016
  • Recently, gender classification has attracted a great deal of attention in the field of video surveillance system. It can be useful in many applications such as detecting crimes for women and business intelligence. In this paper, we proposed a method which can detect pedestrians from CCTV video and classify the gender of the detected objects. So far, many algorithms have been proposed to classify people according the their gender. This paper presents a gender classification using convolutional neural network. The detection phase is performed by AdaBoost algorithm based on Haar-like features and LBP features. Classifier and detector is trained with data-sets generated form CCTV images. The experimental results of the proposed method is male matching rate of 89.9% and the results shows 90.7% of female videos. As results of simulations, it is shown that the proposed gender classification is better than conventional classification algorithm.

Gait-Based Gender Classification Using a Correlation-Based Feature Selection Technique

  • Beom Kwon
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.55-66
    • /
    • 2024
  • 성별 분류 기술은 법의학, 감시 시스템, 인구 통계 연구 등 다양한 분야에서 활용될 수 있기 때문에, 연구자들로부터 많은 관심을 받고 있다. 남성과 여성의 보행 사이에는 서로 구별되는 특징이 있다는 것이 기존 연구들에서 밝혀지면서, 3차원 보행 데이터에서 성별을 분류하는 다양한 기술들이 제안됐다. 하지만, 기존 기술들을 사용해 3차원 보행 데이터로부터 추출한 보행 특징 중에는 서로 유사 또는 중복되거나 성별 분류에 도움이 되지 않는 특징들도 있다. 이에 본 연구에서는 상관관계 기반 특징 선별 기술을 활용해, 성별 분류에 도움이 되는 특징들을 선별하는 방법을 제안한다. 그리고 제안하는 특징 선별 기술의 효용성을 입증하기 위해서, 인터넷상에 공개된 3차원 보행 데이터 세트(Dataset)를 활용하여 제안하는 특징 선별 기술을 적용하기 전과 후에 대해 성별 분류 모델들의 성능을 비교 분석하였다. 실험에는 이진 분류 문제에 적용할 수 있는 여덟 가지의 머신러닝 알고리즘(Machine Learning Algorithms)을 활용하였다. 실험 결과, 제안하는 특징 선별 기술을 사용하면 성별 분류 성능은 유지하면서, 특징의 개수를 82개에서 60개까지, 22개를 줄일 수 있다는 것을 입증하였다.

Gender Classification of Speakers Using SVM

  • Han, Sun-Hee;Cho, Kyu-Cheol
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권10호
    • /
    • pp.59-66
    • /
    • 2022
  • 본 논문에서는 음성 데이터에서 특징벡터를 추출한 후 이를 분석하여 화자의 성별을 분류하는 연구를 진행하였다. 본 연구는 고객이 전화 등 음성을 통해 서비스를 요청할 시 요청한 고객의 성별을 자동으로 인식함으로써 직접 듣고 분류하지 않아도 되는 편의성을 제공한다. 학습된 모델을 활용하여 성별을 분류한 후 성별마다 요청 빈도가 높은 서비스를 분석하여 고객 맞춤형 추천 서비스를 제공하는 데에 유용하게 활용할 수 있다. 본 연구는 공백을 제거한 남성 및 여성의 음성 데이터를 기반으로 각각의 데이터에서 MFCC를 통해 특징벡터를 추출한 후 SVM 모델을 활용하여 기계학습을 진행하였다. 학습한 모델을 활용하여 음성 데이터의 성별을 분류한 결과 94%의 성별인식률이 도출되었다.

대각선형 지역적 이진패턴을 이용한 성별 분류 방법에 대한 연구 (A Study on Gender Classification Based on Diagonal Local Binary Patterns)

  • 최영규;이영무
    • 반도체디스플레이기술학회지
    • /
    • 제8권3호
    • /
    • pp.39-44
    • /
    • 2009
  • Local Binary Pattern (LBP) is becoming a popular tool for various machine vision applications such as face recognition, classification and background subtraction. In this paper, we propose a new extension of LBP, called the Diagonal LBP (DLBP), to handle the image-based gender classification problem arise in interactive display systems. Instead of comparing neighbor pixels with the center pixel, DLBP generates codes by comparing a neighbor pixel with the diagonal pixel (the neighbor pixel in the opposite side). It can reduce by half the code length of LBP and consequently, can improve the computation complexity. The Support Vector Machine is utilized as the gender classifier, and the texture profile based on DLBP is adopted as the feature vector. Experimental results revealed that our approach based on the diagonal LPB is very efficient and can be utilized in various real-time pattern classification applications.

  • PDF

성대진동 및 성별이 미국영어 마찰음에 미치는 효과에 관한 코퍼스 기반 연구 (A corpus-based study on the effects of voicing and gender on American English Fricatives)

  • 윤태진
    • 말소리와 음성과학
    • /
    • 제10권2호
    • /
    • pp.7-14
    • /
    • 2018
  • The paper investigates the acoustic characteristics of English fricatives in the TIMIT corpus, with a special focus on the role of voicing in rendering fricatives in American English. The TIMIT database includes 630 talkers and 2,342 different sentences, and comprises more than five hours of speech. Acoustic analyses are conducted in the domain of spectral and temporal properties by treating gender, voicing, and place of articulation as independent factors. The results of the acoustic analyses revealed that acoustic signals interact in a complex way to signal the gender, place, and voicing of fricatives. Classification experiments using a multiclass support vector machine (SVM) revealed that 78.7% of fricatives are correctly classified. The majority of errors stem from the misclassification of /θ/ as [f] and /ʒ/ as [z]. The average accuracy of gender classification is 78.7%. Most errors result from the classification of female speakers as male speakers. The paper contributes to the understanding of the effects of voicing and gender on fricatives in a large-scale speech corpus.

소규모 합성곱 신경망을 사용한 연령 및 성별 분류 (Age and Gender Classification with Small Scale CNN)

  • ;류재흥
    • 한국전자통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.99-104
    • /
    • 2022
  • 인공지능은 놀라운 이점으로 우리 삶의 중요한 부분을 차지하고 있다. 기계는 이미지에서 물체를 인식하는 것, 특히 사람들을 정확한 나이와 성별 그룹으로 분류하는 것에 있어서 인간을 능가하고 있다. 이러한 측면에서 나이와 성별 분류는 최근 수십 년 동안 컴퓨터 비전 연구자들 사이에서 뜨거운 주제 중 하나였다. 심층 합성곱 신경망(CNN) 모델의 배포는 최첨단 성능을 달성했다. 그러나 대부분의 CNN 기반 아키텍처는 수십 개의 훈련 매개 변수로 매우 복잡하기 때문에 많은 계산 시간과 자원이 필요하다. 이러한 이유로 기존 방법에 비해 훈련 매개 변수와 훈련 시간이 현저히 적은 새로운 CNN기반 분류 알고리즘을 제안한다. 덜 복잡함에도 불구하고 우리 모델은 UTKFace 데이터 세트에서 연령 및 성별 분류의 더 나은 정확도를 보여준다.

연령, 성별, 인종 구분을 위한 잔차블록 기반 컨볼루션 신경망 (Residual Blocks-Based Convolutional Neural Network for Age, Gender, and Race Classification)

  • 하사노바 노디라;신봉기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.568-570
    • /
    • 2023
  • The problem of classifying of age, gender, and race images still poses challenges. Despite deep and machine learning strides, convolutional neural networks (CNNs) remain pivotal in addressing these issues. This paper introduces a novel CNN-based approach for accurate and efficient age, gender, and race classification. Leveraging CNNs with residual blocks, our method enhances learning while minimizing computational complexity. The model effectively captures low-level and high-level features, yielding improved classification accuracy. Evaluation of the diverse 'fair face' dataset shows our model achieving 56.3%, 94.6%, and 58.4% accuracy for age, gender, and race, respectively.

A Corpus-based study on the Effects of Gender on Voiceless Fricatives in American English

  • Yoon, Tae-Jin
    • 말소리와 음성과학
    • /
    • 제7권1호
    • /
    • pp.117-124
    • /
    • 2015
  • This paper investigates the acoustic characteristics of English fricatives in the TIMIT corpus, with a special focus on the role of gender in rendering fricatives in American English. The TIMIT database includes 630 talkers and 2342 different sentences, comprising over five hours of speech. Acoustic analyses are conducted in the domain of spectral and temporal properties by treating gender as an independent factor. The results of acoustic analyses revealed that the most acoustic properties of voiceless sibilants turned out to be different between male and female speakers, but those of voiceless non-sibilants did not show differences. A classification experiment using linear discriminant analysis (LDA) revealed that 85.73% of voiceless fricatives are correctly classified. The sibilants are 88.61% correctly classified, whereas the non-sibilants are only 57.91% correctly classified. The majority of the errors are from the misclassification of /ɵ/ as [f]. The average accuracy of gender classification is 77.67%. Most of the inaccuracy results are from the classification of female speakers in non-sibilants. The results are accounted for by resorting to biological differences as well as macro-social factors. The paper contributes to the understanding of the role of gender in a large-scale speech corpus.