• Title/Summary/Keyword: gelling temperature

Search Result 52, Processing Time 0.017 seconds

Impact of Xanthan-locust Bean Gum Mixtures on Pasting/Paste Characteristics and Freeze-thaw Stabilities of Waxy Rice Starch (찹쌀 전분의 페이스팅/페이스트 특성 및 냉해동 안정성에 대한 잔탄검-로커스트콩검 혼합물의 영향)

  • Kim, Hyun-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.593-600
    • /
    • 2014
  • Normal rice starch (NRS) possesses high gelling and retrogradation tendencies, with poor freeze-thaw stability. This study investigated the effects of partial replacement of waxy rice starch (WRS) with gums on the pasting and viscoelastic properties as well as the freeze-thaw stability of the WRS paste. Xanthan gum (XAT), locust bean gum (LBG), and their mixtures were individually mixed with WRS at a ratio of 1:19 (w/w). WRS-gum mixtures were pasted using a rapid visco-analyzer at 5% total solid content, and analyzed with respect to the pasting and viscoelastic characteristics, and freeze-thaw stability. Pasting properties of WRS were retarded in pasting temperature and enhanced in pasting viscosity (although peak viscosity was varied) by partial replacement with gum and gum mixtures. Storage moduli of WRS-XAT:LBG pastes became similar to those of NRS paste with increasing angular frequency from 1 to 10 rad/s. Finally, WRS-XAT and WRS-XAT:LBG possessed more enhanced freeze-thaw stability than NRS.

Optimal Processing Parameters of Low Molecular Weight Carrageenan by Ultrasound (초음파에 의한 carrageenan 저분자화의 최적 조건)

  • KIM Sang-Moo;PARK Seong-Min;CHOI Hyeon-Mee;LEE Keun-Tai
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.4
    • /
    • pp.495-500
    • /
    • 1999
  • The carrageenans are linear, sulfated Polysaccharides extracted from various species of the Rhodophyta (marine red algae). The carrageenan backbone is based on a repeating disaccharide sequence of $\beta$-D-galactopyranose residues linked glycosidically through position 1 and 3, and $\alpha$-D-galactopyranose residues linked glycosidically through position 1 and 4. Carrageenans are typical food polysaccharides in that food applications overwhelmingly dominate their end uses. Other applications, hewer, including cosmetics, pharmaceuticals, industrial suspensions and paints are also of importance But because of its high degree of gelling and viscosity with low solubility, carrageenan is limited to use beyond $0.03\%$ as food additives. Response Surface Methodology was applied for optimizing the processing parameters of ultrasound treatment in order to produce low-molecular-weight carrageenan. The use of ultrasound significantly reduced viscosity of $\lambda$-carrageenan solutions. Optimal parameters for ultrasound reduction of carrageenan molecular weight were: temperature, $10^{\circ}C$; ultrasound intensity, 121.64 $W/cm^2$ ; tarrageenan concentration, $2\%$; treatment time, 40 min. As the gel permeation chromatogram of dextran standards (M.W.= 500,000 ; 260,000 ; 167,000 ; 71,400 ; 42,000) and ultrsound treated carrageenan, the molecular weight of ultrasound treated carrageenan were approximately 200,000 (peak 1) and 60,000 (peak 2), respectively.

  • PDF