• Title/Summary/Keyword: gelation kinetics

Search Result 15, Processing Time 0.039 seconds

Evaluation of Structure Development of Xanthan and Carob Bean Gum Mixture Using Non-Isothermal Kinetic Model

  • Yoon, Won-Byong;Gunasekaran, Sundaram
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.954-957
    • /
    • 2007
  • Gelation mechanism of xanthan-carob mixture (X/C) was investigated based on thermorheological behavior. Three X/C ratios (1:3, 1:1, and 3:1) were studied. Small amplitude oscillatory shear tests were performed to measure linear viscoelastic behavior during gelation. Temperature sweep ($-1^{\circ}C/min$) experiments were conducted. Using a non-isothermal kinetic model, activation energy (Ea) during gelation was calculated. At 1% total concentration, the Ea for xanthan fraction (${\phi}_x$)=0.25, 0.5, and 0.75 were 178, 159, and 123 kJ/mol, respectively. However, a discontinuity was observed in the activation energy plots. Based on this, two gelation mechanisms were presumed-association of xanthan and carob molecules and aggregation of polymer strands. The association process is the primary mechanism to form 3-D networks in the initial stage of gelation and the aggregation of polymer strands played a major role in the later stage.

Optimization of Curing Pressure for Automatic Pressure Gelation Molding Process of Ultra High Voltage Insulating Spacers (초고압 절연 스페이서의 자동가압 겔화 성형 공정을 위한 경화 보압의 최적화 )

  • Chanyong Lee;Hangoo Cho;Jaehyeong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.56-62
    • /
    • 2024
  • By introducing curing kinetics and chemo-rheology for the epoxy resin formulation for ultra-high voltage gas insulated switchgear (GIS) Insulating Spacers, a study was conducted to simulate the curing behavior, flow and warpage analysis for optimization of the molding process in automatic pressure gelation. The curing rate equation and chemo-rheology equation were set as fixed values for various factors and other physical property values, and the APG molding process conditions were entered into the Moldflow software to perform optimization numerical simulations of the three-phase insulating spacer. Changes in curing shrinkage according to pack pressure were observed under the optimized process conditions. As a result, it was confirmed that the residence time in the solid state was shortened due to the lowest curing reaction when the curing holding pressure was 3 bar, and the occurrence of deformation due to internal residual stress was minimized.

The effect of calcium concentration and temperature on the gelation of Aigeok Polysaccharide (Aigeok polysaccharide의 겔화에 미치는 칼슘농도와 온도의 효과)

  • Lee, Hyang-Aee;Kim, Keyng-Yi
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.7-11
    • /
    • 2001
  • The influence of temperature and calcium concentration on the gelation kinetics of purified Aigeok system has been investigated by small deformation oscillatory measurement. DE(degree of esterification) of the present sample was indicated of low methoxyl Aigeok polysaccharide by FT-IR. The calcium induced gelation of Aigeok has been studied. Both moduli reached the saturation value during the period of experiments. Rate constant increased with increasing calcium concentration, however above 4.08 mM calcium chloride caused a sudden drop in gel strength. The experimental result that the decrease in gel strength at high calcium concentration was seems to be phase separation or competitive inhibition between calcium ions. The storage and loss shear moduli decreased with increasing temperature. The rate constant of Aigeok system remarkably dropped above $35^{\circ}C$. Thus hydrogen bonding is prior to hydrophobic interaction for Aigeok molecule.

  • PDF

Regioselective Succinylation and Gelation Behavior of Glycol Chitosan

  • Jeong, Keun-Soo;Lee, Won-Bum;Cha, Ju-Eun;Park, Chong-Rae;Cho, Yong-Woo;Kwon, Ick-Chan
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.57-61
    • /
    • 2008
  • Chitosan is normally acylated and subsequently conjugated with drugs for biomedical applications. This study examined the relationship between the succinylation and gelation behaviors of glycol chitosan. Glycol chitosan was acylated with succinic anhydride under a wide variety of reaction conditions, such as different molar ratios of succinic anhydride to glucosamine, different methanol content in the reaction media, and different reaction temperatures. Among these reaction parameters, the methanol content in the solvent played an important role in determining the regioseletive succinylating site. N-succinylation and N-N cross-linking occurred regardless of the reaction conditions. However, O-succinylation was observed under specific conditions, i.e. a methanol content> 0.6 (v/v) and a reaction temperature> $25^{\circ}C$. O-succinylation accelerated the N-O cross-linking of glycol chitosan, and led to gelation. The N-succinylated glycol chitosans were water-soluble, whereas the N-and O-succinylated glycol chitosans fonned a gel. These physico-chemical structural differences in the succinylated glycol chitosans would definitely influence subsequent drug-conjugation reactions and consequently the drug loading and release kinetics.

Supported Iron Nanoparticles on Activated Carbon, Polyethylene and Silica for Nitrate Reduction

  • Cho, Mi-Sun;Kim, E-Wha;Lee, Kyoung-Hee;Ahn, Sam-Young
    • Journal of Environmental Science International
    • /
    • v.17 no.7
    • /
    • pp.711-717
    • /
    • 2008
  • The use of support materials on the nanoparticle synthesis and applications has advantages in many aspects; resisting the aggregation and gelation of nanoparticles, providing more active sites by dispersing over the supports, and facilitating a filtering process. In order to elucidate the influence of the supports on the nitrate reduction reactivity, the supported iron nanoparticles were prepared by borohydride reduction of an aqueous iron salt in the presence of supports such as activated carbon, silica and polyethylene. The reactivity for nitrate reduction decreased in the order of unsupported Fe(0) > activated carbon(AC) supported Fe(0) > polyethylene(PE) supported Fe(0) ${\ge}$ silica supported Fe(0). Rate constants decrease with increasing initial nitrate concentration implying that the reaction is limited by the surface reaction kinetics.

Rheological Properties and Cure Kinetics of Cycloaliphatic/DGEBA Epoxy Blend System Initiated by Cationic Latent Curing Agent (잠재성 경화제를 이용한 Cycloaliphatic/DGEBA계 에폭시 블렌드 시스템의 유변학적 특성 및 경화 동력학)

  • 곽근호;박수진;이재락;김영근
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.227-233
    • /
    • 1998
  • The effects of 1 mol% N-benzylpyrazinium hexafluoroantimonate(BPH) as a thermal latent initiator and blend compositions composed of cycloaliphatic and DGEBA epoxies were investigated in the rheological properties and cure kinetics. Latent properties were performed by measurement of the conversion as a function of reaction time using isothermal DSC at $150^{\circ}C$ and $50^{\circ}C$ Rheological properties of the blend systems were investigated in terms of isothermal experiments using a rheometer. The gelation time was obtained from the evaluation of storage modulus (G'), loss modulus (G") and damping factor (tan$\delta$)). Cross-linking activation energy ($E_c$) was also determined from the Arrhenius equation based on gel time and curing temperature. As a result, the gel time and cross-linking activation energy increased with increasing DGEBA composition. The cure activation energies ($E_a$) were obtained by Kissinger method using dynamic DSC thermograms. In this work, the cure activation energy decreased with increasing CAE concentration, which might be resulted from the short repeat units, simple side-groups and viscosity of reaction media.edia.

  • PDF

Fabrication and Characterization of Flurbiprofen loaded Chitosan Beads for Periodontal Regeneration (치주조직 재생용 플루르비프로펜 함유 키토산 비드의 제조 및 용출특성)

  • Rhee, Su-Jin;Park, Yoon-Jeong;Lee, Seung-Jin;Chung, Chong-Pyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.1
    • /
    • pp.71-77
    • /
    • 1997
  • With the aim of improving periodontal regeneration efficacy, as a biodegradable local drug delivery device, drug releasing chitosan beads were prepared. Chitosan beads were prepared through the formation of intermolecular or intramolecular ionic interaction bewteen chitosan and sodium tripolyphosphate and were loaded with flurbiprofen. The mean diameter of the beads was $250\;{\mu}m$. Drug loading efficiency was improved by regulating the pH of tripolyphosphate solution. The drug release kinetics mainly depended upon the hydrophobic properties of the flurbiprofen, that is, the release of flurbiprofen showed initial burst with rapid release for the first day followed by a levelling off of the release rate. However, the release rate could be controlled by the formulation factor including the pH, concentration of the tripolyphosphate solution, gelation time, drug contents. From these results, flurbiprofen loaded chitosan beads were anticipated as biodegradable local drug delivery devices for periodontal regeneneration.

  • PDF

Swelling Behavior and Drug Release of Poly(vinyl alcohol) Hydrogel Cross-Linked with Poly(acrylic acid)

  • Byun, Hong-Sik;Hong, Byung-Pyo;Nam, Sang-Yong;Jung, Sun-Young;Rhim, Ji-Won;Lee, Sang-Bong;Moon, Go-Young
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.189-193
    • /
    • 2008
  • Thermal cross-linking method of poly(vinyl alcohol) (PVA) using poly(acrylic acid) (PAA) was carried out on PVA/PAA hydrogels. The level of gelation was measured in the PVA/PAA hydrogels with various PAA contents. The swelling behavior at various pHs showed that the swelling kinetics and water contents of the PVA/PAA hydrogels reached equilibrium after 30 h, and the time to reach the equilibrium state decreased with increasing PAA content in the hydrogel. The water content increased with increasing pH of the buffer solution. The permeation and release of the drug were tested using indomethacin as a model drug. The permeated and released amounts of the drug increased with decreasing the PAA content because of the low free volume in the hydrogel due to the higher cross-linking density. The kinetic profile of drug release at various pHs showed that all samples reached the equilibrium state within the 5 h.

Performance of Urea-Formaldehyde Resins Synthesized at Two Different Low Molar Ratios with Different Numbers of Urea Addition

  • Jeong, Bora;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.221-228
    • /
    • 2019
  • This study reports the performance of urea-formaldehyde (UF) resins prepared at two different low formaldehyde/urea (F/U) mole ratios with different numbers of urea addition during synthesis. The second or third urea was added during the synthesis of UF resins to obtain two different low molar ratios of 0.7 and 1.0, respectively. The molecular weights, cure kinetics, and adhesion performance of these resins were characterized by the gel permeation chromatography, differential scanning calorimetry, and tensile shear strength of plywood, respectively. When the number of urea additions and F/U molar ratio increased, the gelation time decreased, whereas the viscosity and molecular weight increased. Further, the UF resins prepared with the second urea and 1.0 molar ratio resulted in greater activation energy than those with third urea and 0.7 molar ratio. Tensile shear strength and formaldehyde emission (FE) of the plywood that bonded with these resins increased when the number of urea additions and molar ratio increased. These results suggest that the UF resins prepared with 0.7 molar ratio and third urea addition provide lower adhesion performance and FE than those resins with 1.0 mole ratio and the second urea addition.